Что значит разложить на множители многочлен примеры. Разложение на множители

Урок 7: Разложение многочленов

Что значит разложить на множители многочлен примеры. Разложение на множители

План урока:

Вынесение общего множителя за скобки

Способ группировки

Применение разложение многочленов на множители

Вынесение общего множителя за скобки

В предыдущем уроке мы изучили умножение многочлена на одночлен. Например, произведение монома a и полинома b + c находится так:

a(b + c) = ab + bc

Однако в ряде случае удобнее выполнить обратную операцию, которую можно назвать вынесением общего множителя за скобки:

ab + bc = a(b + c)

Например, пусть нам надо вычислить значение полинома ab + bc при значениях переменных a = 15,6, b = 7,2, c = 2,8. Если подставить их напрямую в выражение, то получим

ab + bc = 15.6 * 7.2 + 15.6 * 2.8

что, скорее всего, не получится посчитать в уме. Если же вынести a за скобки, то получим иную запись:

ab + bc = a(b + c) = 15.6 * (7.2 + 2.8) = 15.6 * 10 = 156

В данном случае мы представили полином ab + bc как произведение двух множителей: a и b + с. Данное действие называют разложением многочлена на множители.

При этом каждый из множителей, на которые разложили многочлен, в свою очередь может быть многочленом или одночленом.

Рассмотрим полином 14ab – 63b2. Каждый из входящих в него одночленов можно представить как произведение:

14ab = 7b * 2a

63b2 = 7b * 9b

Видно, что у обоих многочленов есть общий множитель 7b. Значит, его можно вынести за скобки:

14ab – 63b2 = 7b*2a – 7b*9b = 7b(2a-9b)

Проверить правильность вынесения множителя за скобки можно с помощью обратной операции – раскрытия скобки:

7b(2a – 9b) = 7b*2a – 7b*9b = 14ab – 63b2

Важно понимать, что часто полином можно разложить несколькими способами, например:

5abc + 6bcd = b(5ac + 6cd) = c(5ab + 6bd) = bc(5a + 6d)

Обычно стремятся вынести, грубо говоря, «наибольший» одночлен. То есть раскладывают полином так, чтобы из оставшегося полинома больше нечего нельзя было вынести. Так, при разложении

5abc + 6bcd = b(5ac + 6cd)

в скобках осталась сумма одночленов, у которых есть общий множитель с. Если же вынести и его, то общих множителей в скобках не останется:

b(5ac + 6cd) = bc(5a + 6d)

Разберем детальнее, как находить общие множители у одночленов. Пусть надо разложить сумму

8a3b4 + 12a2b5v + 16a4b3c10

Она состоит из трех слагаемых. Сначала посмотрим на числовые коэффициенты перед ними. Это 8, 12 и 16. В 3 уроке 6 класса рассматривалась тема НОД и алгоритм его нахождения.Это наибольший общий делитель.Почти всегда его можно подобрать устно. Числовым коэффициентом общего множителя как раз будет НОД числовых коэффициентов слагаемых полинома. В данном случае это число 4.

Далее рассмотрим буквенную часть. В ней должны быть переменные, которые есть во ВСЕХ слагаемых. В данном случае это a и b, а переменная c общей не является, так как не входит в первое слагаемое.

Далее смотрим на степени у этих переменных. В общем множителе у букв должны быть минимальные степени, которые встречаются в слагаемых. Так, у переменной a в многочлене степени 3, 2, и 4 (минимум 2), поэтому в общем множителе будет стоять a2. У переменной b минимальная степень равна 3, поэтому в общем множителе будет стоять b3:

8a3b4 + 12a2b5v + 16a4b3c10 = 4a2b3(2ab + 3b2c + 4a2c10)

В результате у оставшихся слагаемых 2ab, 3b2c, 4a2c10 нет ни одной общей буквенной переменной, а у их коэффициентов 2, 3 и 4 нет общих делителей.

Выносить за скобки можно не только одночлены, но и многочлены. Например:

x(a-5) + 2y(a-5) = (a-5)(x+2y)

Еще один пример. Необходимо разложить выражение

5t(8y – 3x) + 2s(3x – 8y)

Решение. Напомним, что знак минус меняет знаки в скобках на противоположные, поэтому

-(8y – 3x) = -8y + 3x = 3x – 8y

Значит, можно заменить (3x – 8y) на – (8y – 3x):

5t(8y – 3x) + 2s(3x – 8y) = 5t(8y – 3x) + 2*(-1)s(8y – 3x) = (8y – 3x)(5t – 2s)

Ответ: (8y – 3x)(5t – 2s).

Запомним, что вычитаемое и уменьшаемое можно поменять местами, если изменить знак перед скобками:

(a – b) = – (b – a)

Верно и обратное: минус, уже стоящий перед скобками, можно убрать, если одновременно переставить местами вычитаемое и уменьшаемое:

Этот прием часто используется при решении заданий.

Способ группировки

Рассмотрим ещё один способ разложения многочлена на множители, который помогает раскладывать полином. Пусть есть выражение

ab – 5a + bc – 5c

Вынести множитель, общий для всех четырех мономов, не получается. Однако можно представить этот полином как сумму двух многочленов, и в каждом из них вынести переменную за скобки:

ab – 5a + bc – 5c = (ab – 5a) + (bc – 5c) = a(b – 5) + c(b – 5)

Теперь можно вынести выражение b – 5:

a(b – 5) + c(b – 5) = (b – 5)(a + c)

Мы «сгруппировали» первое слагаемое со вторым, а третье с четвертым. Поэтому описанный метод называют способом группировки.

Пример. Разложим полином 6xy + ab– 2bx– 3ay.

Решение. Группировка 1-ого и 2-ого слагаемого невозможна, так как у них нет общего множителя. Поэтому поменяем местами мономы:

6xy + ab – 2bx – 3ay = 6xy – 2bx + ab – 3ay = (6xy – 2bx) + (ab – 3ay) = 2x(3y – b) + a(b – 3y)

Разности 3y – b и b – 3y отличаются только порядком переменных. В одной из скобок его можно изменить, вынеся знак минус за скобки:

(b – 3y) = – (3y – b)

Используем эту замену:

2x(3y – b) + a(b – 3y) = 2x(3y – b) – a(3y – b) = (3y – b)(2x – a)

В результате получили тождество:

6xy + ab – 2bx – 3ay = (3y – b)(2x – a)

Ответ: (3y – b)(2x – a)

Группировать можно не только два, а вообще любое количество слагаемых. Например, в полиноме

x2 – 3xy + xz + 2x – 6y + 2z

можно сгруппировать первые три и последние 3 одночлена:

x2 – 3xy + xz + 2x – 6y + 2z = (x2 – 3xy + xz) + (2x – 6y + 2z) = x(x – 3y + z) + 2(x – 3y + z) = (x + 2)(x – 3y + z)

Теперь рассмотрим задание повышенной сложности

Пример. Разложите квадратный трехчлен x2– 8x +15.

Решение. Данный полином состоит всего из 3 одночленов, а потому, как кажется, группировку произвести не получится. Однако можно произвести такую замену:

-8x = -3x – 5x

Тогда исходный трехчлен можно представить следующим образом:

x2 – 8x + 15 = x2 – 3x – 5x + 15

Сгруппируем слагаемые:

x2 – 3x – 5x + 15 = (x2 – 3x) + (- 5x + 15) = x(x – 3) – 5(x – 3) = (x – 5)(x – 3)

Ответ: (x– 5)(х – 3).

Конечно, догадаться о замене – 8х = – 3х – 5х в приведенном примере нелегко. Покажем иной ход рассуждений. Нам надо разложить полином второй степени. Как мы помним, при перемножении многочленов их степени складываются.

Это значит, что если мы и сможем разложить квадратный трехчлен на два множителя, то ими окажутся два полинома 1-ой степени.

Запишем произведение двух многочленов первой степени, у которых старшие коэффициенты равны 1:

(x + a)(x + b) = x2 + xa + xb + ab = x2 + (a + b)x + ab

Здесь за a и b мы обозначили некие произвольные числа. Чтобы это произведение равнялось исходному трехчлену x2– 8x +15, надо подобрать подходящие коэффициенты при переменных:

С помощью подбора можно определить, что этому условию удовлетворяют числа a= – 3 и b = – 5. Тогда

(x – 3)(x – 5) = x2 * 8x + 15

в чем можно убедиться, раскрыв скобки.

Для простоты мы рассмотрели только случай, когда у перемножаемых полиномов 1-ой степени старшие коэффициенты равны 1. Однако они могли равняться, например, 0,5 и 2. В этом случае разложение выглядело бы несколько иначе:

x2 * 8x + 15 = (2x – 6)(0.5x – 2.5)

Однако, вынеся коэффициент 2 из первой скобки и умножив его на вторую, получили бы изначальное разложение:

(2x – 6)(0.5x – 2.5) = (x – 3) * 2 * (0.5x – 2.5) = (x – 3)(x – 5)

В рассмотренном примере мы разложили квадратный трехчлен на два полинома первой степени. В дальнейшем нам часто придется это делать. Однако стоит отметить, что некоторые квадратные трехчлены, например,

x2 – x + 1

невозможно разложить таким образом на произведение полиномов. Доказано это будет позднее.

Применение разложение многочленов на множители

Разложение полинома на множители может упростить выполнение некоторых операций. Пусть необходимо выполнить вычисление значения выражения

2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 

Вынесем число 2, при этом степень каждого слагаемого уменьшится на единицу:

2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 = 2(1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 )

Обозначим сумму

2 + 22 + 23 + 24 + 25 + 26 + 27 + 28

за х. Тогда записанное выше равенство можно переписать:

x + 29 = 2(1 + x)

Получили уравнение, решим его (см. урок уравнения):

x + 29 = 2(1 + x)

x + 29 = 2 + 2x

2x – x = 29 – 2

x = 512 – 2 = 510

Теперь выразим искомую нами сумму через х:

2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 = x + 29 = 510 + 512 = 1022

При решении этой задачи мы возводили число 2 только в 9-ую степень, а все остальные операции возведения в степень удалось исключить из вычислений за счет разложения многочлена на множители. Аналогично можно составить формулу вычисления и для других подобных сумм.

Теперь вычислим значение выражения

38.42 – 61.6 * 29.5 + 61.6 * 38.4 – 29.5 * 38.4

Посчитать это напрямую достаточно сложно. Однако можно применить метод группировки:

38.42 – 61.6 * 29.5 + 61.6 * 38.4 – 29.5 * 38.4 = 38.42 – 29.5 * 38.4 + 61.6 * 38.4 – 61.6 * 29.5 = 38.4(38.4 – 29.5) + 61.6(38.4 – 29.5) = (38.4 + 61.6)(38.4 – 29.5) = 8.9*100 = 890

Далее посмотрим, как можно использовать разложение полинома для доказательства делимости чисел. Пусть требуется доказать, что выражение

814 – 97 + 312

делится на 73. Заметим, что числа 9 и 81 являются степенями тройки:

9 = 32

81 = 92 = (32)2 = 34

Зная это, произведем замену в исходном выражении:

814 – 97 + 312 = (34)4 – (32)7 + 312 = 316 – 314 + 312

Вынесем 312:

316 – 314 + 312 = 312(34 – 32 + 1) = 312 * (81 – 9 + 1) = 312 * 73

Произведение 312•73 делится на 73 (так как на него делится один из множителей), поэтому и выражение 814 – 97 + 312 делится на это число.

Вынесение множителей может использоваться для доказательства тождеств. Например, докажем верность равенства

(a2 + 3a)2 + 2(a2 + 3a) = a(a + 1)(a + 2)(a + 3)

Для решения тождества преобразуем левую часть равенства, вынеся общий множитель:

(a2 + 3a)2 + 2(a2 + 3a) = (a2 + 3a)(a2 + 3a) + 2(a2 + 3a) = (a2 + 3a)(a2 + 3a + 2)

Далее произведем замену 3a = 2a + a:

(a2 + 3a)(a2 + 3a + 2) = (a2 + 3a)(a2 + 2a + a + 2) = (a2 + 3a)((a2 + 2a) + (a + 2) = (a2 + 3a)(a(a + 2) + (a + 2)) = (a2 + 3a)(a + 1)(a + 2) = a(a + 3)(a + z)(a + 2) = a(a + 1)(a + 2)(a + 3)

Ещё один пример. Докажем, при любых значениях переменных x и у выражение

(x – y)(x + y) – 2x(x – y)

не является положительным числом.

Решение. Вынесем общий множитель х – у:

(x – y)(x + y) – 2x(x – y) = (x – y)(x + y – 2x) = (x – y)(y – x)

Обратим внимание, что мы получили произведение двух похожих двучленов, отличающихся лишь порядком букв x и y. Если бы мы поменяли местами в одной из скобок переменные, то получили бы произведение двух одинаковых выражений, то есть квадрат. Но для того, чтобы поменять местами x и y, нужно перед скобкой поставить знак минус:

(x – y) = -(y – x)

Тогда можно записать:

(x – y)(y – x) = -(y – x)(y – x) = -(y – x)2

Как известно, квадрат любого числа больше или равен нулю. Это относится и к выражению (у – х)2. Если же перед выражением стоит минус, то оно должно быть меньше или равным нулю, то есть не является положительным числом.

Разложение полинома помогает решать некоторые уравнения. При этом используется следующее утверждение:

Если в одной части уравнения стоит ноль, а в другой произведение множителей, то каждый из них следует приравнять нулю.

Пример. Решите уравнение (s – 1)(s + 1) = 0.

Решение. В левой части записано произведение мономов s – 1 и s + 1, а в правой – ноль. Следовательно, нулю должно равняться или s – 1, или s + 1:

(s – 1)(s + 1) = 0

s – 1 = 0 или s + 1 = 0

s = 1 или s = -1

Каждое из двух полученных значений переменной s является корнем уравнения, то есть оно имеет два корня.

Ответ: –1; 1.

Пример. Решите уравнение 5w2 – 15w = 0.

Решение. Вынесем 5w:

5w2 – 15w = 0

5w(w – 3) = 0

Снова в левой части записано произведение, а в правой ноль. Продолжим решение:

5w = 0 или (w – 3) = 0

w = 0 или w = 3

Ответ: 0; 3.

Пример. Найдите корни уравнения k3– 8k2 + 3k– 24 = 0.

Решение. Сгруппируем слагаемые:

k3– 8k2 + 3k– 24 = 0

(k3– 8k2) + (3k– 24) = 0

k2(k – 8) + 3(k – 8) = 0

(k3 + 3)(k – 8) = 0

k2 + 3 = 0 или k – 8 = 0

k2 = -3 или k = 8

Заметим, что уравнение k2 = – 3 решения не имеет, так как любое число в квадрате не меньше нуля. Поэтому единственным корнем исходного уравнения является k = 8.

Ответ: 8.

Пример. Найдите корни уравнения

(2u – 5)(u + 3) = 7u + 21

Решение: Перенесем все слагаемые в левую часть, а после сгруппируем слагаемые:

(2u – 5)(u + 3) = 7u + 21

(2u – 5)(u + 3) – 7u – 21 = 0

(2u – 5)(u + 3) – 7(u + 3) = 0

(2u – 5 – 7)(u + 3) = 0

(2u – 12)(u + 3) = 0

2u – 12 = 0 или u + 3 = 0

u = 6 или u = -3

Ответ: – 3; 6.

Пример. Решите уравнение

(t2 – 5t)2 = 30t – 6t2

Решение:

(t2 – 5t)2 = 30t – 6t2

(t2 – 5t)2 – (30t – 6t2) = 0

(t2 – 5t)(t2 – 5t) + 6(t2 – 5t) = 0

(t2 – 5t)(t2 – 5t + 6) = 0

t2 – 5t = 0 или t2 – 5t + 6 = 0

Далее решим по отдельности эти уравнения:

t2 – 5t = 0

t(t – 5) = 0

t = 0 или t – 5 = 0

t = 0 или t = 5

Теперь займемся вторым уравнением. Перед нами снова квадратный трехчлен. Чтобы разложить его на множители методом группировки, нужно представить его в виде суммы 4 слагаемых. Если произвести замену – 5t = – 2t – 3t, то дальше удастся сгруппировать слагаемые:

t2 – 5t + 6 = 0

t2 – 2t – 3t + 6 = 0

t(t – 2) – 3(t – 2) = 0

(t – 3)(t – 2) = 0

T – 3 = 0 или t – 2 = 0

t = 3 или t = 2

В результате получили, что у исходного уравнения есть 4 корня.

Ответ: 0, 2, 3, 5

Источник: https://100urokov.ru/predmety/urok-6-razlozhenie-mnogochlenov

Примеры разложения многочленов на множители

Что значит разложить на множители многочлен примеры. Разложение на множители

Приводится 8 примеров разложения многочленов на множители. Они включают в себя примеры с решением квадратных и биквадратных уравнений, примеры с возвратными многочленами и примеры с нахождением целых корней у многочленов третьей и четвертой степени.

Разложить многочлен на множители:
x4 + x3 – 6×2.

Решение

Выносим x2 за скобки:
.
Решаем квадратное уравнение x2 + x – 6 = 0:
. Корни уравнения:

,   .

Отсюда получаем разложение многочлена на множители:
.

Ответ

.

Пример 1.2

Разложить на множители многочлен третьей степени:
x3 + 6×2 + 9x.

Решение

Выносим x за скобки:
.
Решаем квадратное уравнение x2 + 6x + 9 = 0:
Его дискриминант:   .
Поскольку дискриминант равен нулю, то корни уравнения кратные: ;
.

Отсюда получаем разложение многочлена на множители:
.

Ответ

.

Пример 1.3

Разложить на множители многочлен пятой степени:
x5 – 2×4 + 10×3.

Решение

Выносим x3 за скобки:
.
Решаем квадратное уравнение x2 – 2x + 10 = 0.
Его дискриминант:   .
Поскольку дискриминант меньше нуля, то корни уравнения комплексные: ;
,   .

Разложение многочлена на множители имеет вид:
.

Если нас интересует разложение на множители с действительными коэффициентами, то:
.

Ответ

.

Пример 2.1

Разложить биквадратный многочлен на множители:
x4 +x2 – 20.

Решение

Применим формулы:
a2 + 2ab + b2 = (a + b)2;
a2 – b2 = (a – b)(a + b).

;
.

Ответ

.

Пример 2.2

Разложить на множители многочлен, сводящийся к биквадратному:
x8 +x4 + 1.

Решение

Применим формулы:
a2 + 2ab + b2 = (a + b)2;
a2 – b2 = (a – b)(a + b):

;

;
.

Ответ

.

Пример 2.3 с возвратным многочленом

Разложить на множители возвратный многочлен:
.

Решение

Возвратный многочлен имеет нечетную степень. Поэтому он имеет корень x = –1. Делим многочлен на x – (–1) = x + 1. В результате получаем:
. Делаем подстановку:

,   ;

;

;
.

Ответ

.

Пример 3.1

Разложить многочлен на множители:
.

Решение

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 6 (члена без x). То есть целый корень может быть одним из чисел:
–6, –3, –2, –1, 1, 2, 3, 6. Подставляем поочередно эти значения:

(–6)3 – 6·(–6)2 + 11·(–6) – 6 = –504;

(–3)3 – 6·(–3)2 + 11·(–3) – 6 = –120;
(–2)3 – 6·(–2)2 + 11·(–2) – 6 = –60;
(–1)3 – 6·(–1)2 + 11·(–1) – 6 = –24;
13 – 6·12 + 11·1 – 6 = 0;
23 – 6·22 + 11·2 – 6 = 0;
33 – 6·32 + 11·3 – 6 = 0;
63 – 6·62 + 11·6 – 6 = 60.

Итак, мы нашли три корня:
x1 = 1, x2 = 2, x3 = 3. Поскольку исходный многочлен – третьей степени, то он имеет не более трех корней. Поскольку мы нашли три корня, то они простые. Тогда

.

Ответ

.

Пример 3.2

Разложить многочлен на множители:
.

Решение

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x). То есть целый корень может быть одним из чисел:
–2, –1, 1, 2. Подставляем поочередно эти значения:

(–2)4 + 2·(–2)3 + 3·(–2)3 + 4·(–2) + 2 = 6;

(–1)4 + 2·(–1)3 + 3·(–1)3 + 4·(–1) + 2 = 0;
14 + 2·13 + 3·13 + 4·1 + 2 = 12;
24 + 2·23 + 3·23 + 4·2 + 2 = 54.

Итак, мы нашли один корень:
x1 = –1.
Делим многочлен на x – x1 = x – (–1) = x + 1:
Тогда,

.

Теперь нужно решить уравнение третьей степени:
.
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x). То есть целый корень может быть одним из чисел:
1, 2, –1, –2.
Подставим x = –1:
.

Итак, мы нашли еще один корень x2 = –1. Можно было бы, как и в предыдущем случае, разделить многочлен     на   , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то разложение многочлена на множители имеет вид:
.

Ответ

.

Олег Одинцов.     : 18-06-2015

Источник: https://1cov-edu.ru/mat_analiz/integrali/neopredelennie/ratsionalnye/razlozhenie_mnogochlenov/primery/

Разложение многочлена на множители: примеры, правило

Что значит разложить на множители многочлен примеры. Разложение на множители

Для того, чтобы разложить на множители, необходимо упрощать выражения. Это необходимо для того, чтобы можно было в дальнейшем сократить. Разложение многочлена имеет смысл тогда, когда его степень не ниже второй. Многочлен с первой степенью называют линейным.

Статья раскроет все понятия разложения, теоретические основы и способы разложений многочлена на множители.

Теория

Теорема 1

Когда любой многочлен со степенью n, имеющие вид Pnx=anxn+an-1xn-1+…+a1x+a0 , представляют в виде произведения с постоянным множителем со старшей степенью an и n линейных множителей (x-xi) , i=1, 2, …, n, тогда Pn(x)=an(x-xn)(x-xn-1)·…·(x-x1) , где xi , i=1, 2, …, n – это и есть корни многочлена.

Теорема предназначена для корней комплексного типа xi ,i=1, 2, …, n и для комплексных коэффициентов ak ,k=0, 1, 2, …, n. Это и есть основа любого разложения.

Когда коэффициенты вида ak, k=0, 1, 2, …, n являются действительными числами, тогда комплексные корни, которые будут встречаться сопряженными парами.

Например, корни x1  и x2 , относящиеся к многочлену вида Pnx=anxn+an-1xn-1+…

+a1x+a0  считаются комплексно сопряженным, тогда другие корни являются действительными, отсюда получаем, что многочлен примет вид Pn(x)=an(x-xn)(x-xn-1)·…·(x-x3)x2+px+q , где x2+px+q=(x-x1)(x-x2).

Замечание

Корни многочлена могут повторяться. Рассмотрим доказательство теоремы алгебры, следствия из теоремы Безу.

Основная теорема алгебры

Теорема 2

Любой многочлен со степенью n имеет как минимум один корень.

Теорема Безу

После того, как произвели деление многочлена вида Pnx=anxn+an-1xn-1+…+a1x+a0  на (x-s), тогда получаем остаток, который равен многочлену в точке s, тогда получим

Pnx=anxn+an-1xn-1+…+a1x+a0=(x-s)·Qn-1(x)+Pn(s) , где Qn-1(x)  является многочленом со степенью n-1.

Следствие из теоремы Безу

Когда корень многочлена Pn(x) считается s, тогда Pnx=anxn+an-1xn-1+…+a1x+a0=(x-s)·Qn-1(x) . Данное следствие является достаточным при употреблении для описания решения.

Разложение на множители квадратного трехчлена

Квадратный трехчлен вида ax2+bx+c  можно разложить на линейные множители. тогда получим, что ax2+bx+c=a(x-x1)(x-x2), где x1 и x2  – это корни (комплексные или действительные).

Отсюда видно, что само разложение сводится к решению квадратного уравнения впоследствии.

Пример 1

Произвести разложение квадратного трехчлена на множители.

Решение

Необходимо найти корни уравнения 4×2-5x+1=0 . Для этого необходимо найти значение дискриминанта по формуле, тогда получим D=(-5)2-4·4·1=9 . Отсюда имеем, что

x1=5-92·4=14×2=5+92·4=1

Отсюда получаем, что 4×2-5x+1=4x-14x-1.

Для выполнения проверки нужно раскрыть скобки. Тогда получим выражение вида:

4x-14x-1=4×2-x-14x+14=4×2-5x+1

После проверки приходим к исходному выражению. То есть можно сделать вывод, что разложение выполнено верно.

Пример 2

Произвести разложение на множители квадратный трехчлен вида 3×2-7x-11.

Решение

Получим, что необходимо вычислить получившееся квадратное уравнение вида 3×2-7x-11=0.

Чтобы найти корни, надо определить значение дискриминанта. Получим, что

3×2-7x-11=0D=(-7)2-4·3·(-11)=181×1=7+D2·3=7+1816×2=7-D2·3=7-1816

Отсюда получаем, что 3×2-7x-11=3x-7+1816x-7-1816 .

Пример 3

Произвести разложение многочлена 2×2+1  на множители.

Решение

Теперь нужно решить квадратное уравнение 2×2+1=0 и найти его корни. Получим, что

2×2+1=0x2=-12×1=-12=12·ix2=-12=-12·i

Эти корни называют комплексно сопряженными, значит само разложение можно изобразить как 2×2+1=2x-12·ix+12·i .

Пример 4

Произвести разложение квадратного трехчлена x2+13x+1.

Решение

Для начала необходимо решить квадратное уравнение вида x2+13x+1=0  и найти его корни.

x2+13x+1=0D=132-4·1·1=-359×1=-13+D2·1=-13+353·i2=-1+35·i6=-16+356·ix2=-13-D2·1=-13-353·i2=-1-35·i6=-16-356·i

Получив корни, запишем

x2+13x+1=x–16+356·ix–16-356·i==x+16-356·ix+16+356·i

Замечание

Если значение дискриминанта отрицательное, то многочлены останутся многочленами второго порядка. Отсюда следует, что раскладывать их не будем на линейные множители.

Способы разложения на множители многочлена степени выше второй

При разложении предполагается универсальный метод. Большинство всех случаев основано на следствии из теоремы Безу. Для этого необходимо подбирать значение корня x1 и понизить его степень при помощи деления на многочлена на 1 делением на (x-x1) . Полученный многочлен нуждается  в нахождении корня x2 , причем процесс поиска цикличен до тех пор, пока не получим полное разложение.

Если корень не нашли, тогда применяются другие способы разложения на множители: группировка, дополнительные слагаемые. Данная тема полагает решение уравнений с высшими степенями  и целыми коэффициентами.

Разложение на множители многочлена с рациональными корнями

Для начала примем за рассмотрение способ разложения, содержащий целые коэффициенты вида Pn(x)=xn+an-1xn-1+…+a1x+a0 , где коэффициента при старшей степени равняется 1.

Когда многочлен имеет целые корни, тогда их считают делителями свободного члена.

Пример 6

Произвести разложение выражения f(x)=x4+3×3-x2-9x-18 .

Решение

Рассмотрим, имеются ли целые корни. Необходимо выписать делители числа -18. Получим, что ±1,±2,±3,±6,±9,±18. Отсюда следует, что данный многочлен имеет целые корни. Можно провести проверку по схеме Горнера. Она очень удобная и позволяет быстро получить  коэффициенты разложения многочлена:

xiКоэффициенты многочленов
13-1-9-18
113+1·1=4-1+4·1=3-9+3·1=-6-18+(-6)·1=-24
-113+1·(-1)=2-1+2·(-1)=-3-9+(-3)·(-1)=-6-18+(-6)·(-1)=-12
213+1·2=5-1+5·2=9-9+9·2=9-18+9·2=0
215+1·2=79+7·2=239+23·2=55
-215+1·(-2)=39+3·(-2)=39+3·(-2)=3
315+1·3=89+8·3=339+33·3=108
-315+1·(-3)=29+2·(-3)=39+3·(-3)=0

Отсюда следует, что х=2 и х=-3 – это корни исходного многочлена, который можно представить как произведение вида:

f(x)=x4+3×3-x2-9x-18=(x-2)(x3+5×2+9x+9)==(x-2)(x+3)(x2+2x+3)

Переходим к разложению квадратного трехчлена вида x2+2x+3.

Так как дискриминант получаем отрицательный, значит, действительных корней нет.

Ответ: f(x)=x4+3×3-x2-9x-18=(x-2)(x+3)(x2+2x+3)

Замечание

Допускается использование подбором корня и деление многочлена на многочлен вместо схемы Горнера. Перейдем к рассмотрению разложения многочлена, содержащим целые коэффициенты вида Pn(x)=xn+an-1xn-1+…+a1x+a0, старший из которых на равняется единице.

Этот случай имеет место быть для дробно-рациональных дробей.

Пример 7

Произвести разложение на множители f(x)=2×3+19×2+41x+15.

Решение

Необходимо выполнить замену переменной y=2x, следует переходить  к многочлену с коэффициентами равными 1 при старшей степени. Необходимо начать с умножения выражения на 4. Получаем, что

4f(x)=23·x3+19·22·x2+82·2·x+60==y3+19y2+82y+60=g(y)

Когда получившаяся функция  вида g(y)=y3+19y2+82y+60 имеет целые корни, тогда их нахождение среди делителей свободного члена. Запись примет вид:

±1,±2,±3,±4,±5,±6,±10,±12,±15,±20,±30,±60

Перейдем  к вычислению функции g(y) в этих точка для того, чтобы получить в результате ноль. Получаем, что

g(1)=13+19·12+82·1+60=162g(-1)=(-1)3+19·(-1)2+82·(-1)+60=-4g(2)=23+19·22+82·2+60=308g(-2)=(-2)3+19·(-2)2+82·(-2)+60=-36g(3)=33+19·32+82·3+60=504g(-3)=(-3)3+19·(-3)2+82·(-3)+60=-42g(4)=43+19·42+82·4+60=756g(-4)=(-4)3+19·(-4)2+82·(-4)+60=-28g(5)=53+19·52+82·5+60=1070g(-5)=(-5)3+19·(-5)2+82·(-5)+60

Получаем, что у=-5 – это корень уравнения вида y3+19y2+82y+60, значит, x=y2=-52 – это корень исходной функции.

Пример 8

Необходимо произвести деление столбиком 2×3+19×2+41x+15  на x+52 . 

Решение

Запишем и получим:

Значит,

2×3+19×2+41x+15=x+52(2×2+14x+6)==2x+52(x2+7x+3)

Проверка делителей займет много времени, поэтому выгодней предпринять разложение на множители полученного квадратного трехчлена вида x2+7x+3. Приравниванием к нулю и находим дискриминант.

x2+7x+3=0D=72-4·1·3=37×1=-7+372×2=-7-372⇒x2+7x+3=x+72-372x+72+372

Отсюда следует, что

2×3+19×2+41x+15=2x+52×2+7x+3==2x+52x+72-372x+72+372

Искусственные приемы при  разложении многочлена на множители

Рациональные корни не присущи всем многочленам. Для этого необходимо пользоваться специальными способами для нахождения множителей. Но не все многочлены можно разложить или представить в виде произведения.

Использование формул сокращенного умножения и бинома Ньютона для разложения многочлена на множители

Внешний вид зачастую не всегда дает понять, каким способом необходимо воспользоваться при разложении. После того, как были произведены преобразования, можно выстроить строчку, состоящую из треугольника Паскаля, иначе их называют биномом Ньютона.

Пример 11

Произвести разложение многочлена x4+4×3+6×2+4x-2  на множители.

Решение

Необходимо выполнить преобразование выражения к виду

x4+4×3+6×2+4x-2=x4+4×3+6×2+4x+1-3

На последовательность коэффициентов суммы в скобках указывает выражение x+14.

Значит, имеем x4+4×3+6×2+4x-2=x4+4×3+6×2+4x+1-3=x+14-3.

После применения разности квадратов, получим

x4+4×3+6×2+4x-2=x4+4×3+6×2+4x+1-3=x+14-3==x+14-3=x+12-3x+12+3

Рассмотрим выражение, которое находится во второй скобке. Понятно, что там коней нет, поэтому следует применить формулу разности квадратов еще раз. Получаем выражение вида

x4+4×3+6×2+4x-2=x4+4×3+6×2+4x+1-3=x+14-3==x+14-3=x+12-3x+12+3==x+1-34x+1+34×2+2x+1+3

Пример 12

Произвести разложение на множители x3+6×2+12x+6.

Решение

Займемся преобразованием выражения. Получаем, что

x3+6×2+12x+6=x3+3·2·x2+3·22·x+23-2=(x+2)3-2

Необходимо применить формулу сокращенного умножения разности кубов. Получаем:

x3+6×2+12x+6==(x+2)3-2==x+2-23x+22+23x+2+43==x+2-23×2+x2+23+4+223+43

Способ замены переменной при разложении многочлена на множители

При замене переменной производится понижение степени и разложение многочлена на множители.

Пример 13

Произвести разложение на множители многочлена вида x6+5×3+6.

Решение

По условию видно, что необходимо произвести замену y=x3 . Получаем:

x6+5×3+6=y=x3=y2+5y+6

Корни полученного квадратного уравнения равны y=-2 и y=-3, тогда

x6+5×3+6=y=x3=y2+5y+6==y+2y+3=x3+2×3+3

Необходимо применить формулу сокращенного умножения суммы кубов. Получим выражения вида:

x6+5×3+6=y=x3=y2+5y+6==y+2y+3=x3+2×3+3==x+23×2-23x+43x+33×2-33x+93

То есть получили искомое разложение.

Рассмотренные выше случаи помогут в рассмотрении  и разложении многочлена на множители разными способами.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/matematika/vyrazhenija/razlozhenie-mnogochlena-na-mnozhiteli/

WikiMedForum.Ru
Добавить комментарий