Что значит среднее арифметическое двух чисел. Как найти среднее арифметическое и среднее геометрическое чисел

Среднее арифметическое: физический смысл и визуализация

Что значит среднее арифметическое двух чисел. Как найти среднее арифметическое и среднее геометрическое чисел

Переменная величина – атрибут (свойство) системы, меняющий свое числовое значение. Множество значений переменой величины может иметь вид:

Человек анализирует числовые данные такого рода и принимает решения. Знание температуры воздуха помогает правильно одеться. Курс валюты говорит покупать ее или продавать.

Когда значений одно или несколько, то никаких трудностей не возникает. Но когда значений десятки или сотни, то человеку сложно сразу понять, что означают полученные данные. На помощь приходят интегральные характеристики множеств значений и визуализация.

Одна из интегральных характеристик множества значений переменной величины – среднее арифметическое. Посмотрим на него с точки зрения статистики, физики (механики) и эстетики.

Среднее арифметическое двух чисел

Начнем с минимального набора чисел, для которых можно подсчитать среднее арифметическое. Вот два числа:

Их среднее арифметическое:

Два наблюдения:

  • Среднее арифметическое находится посередине двух чисел (больше меньшего, но меньше большего).
  • Среднее арифметическое не всегда входит в анализируемый набор чисел (не равно ни одному из двух чисел).

Физический смысл среднего арифметического

Изобразим два исходных числа и их среднее арифметическое на числовой оси:

Числа помечены черными кружками, а среднее арифметическое красным треугольником. Полученная конструкция – это весы. Для весов в равновесии правило рычага требует, чтобы моменты сил были равны. Весы не наклоняются ни в одну, ни в другую сторону, так как крутящий момент отсутствует.

В механике момент силы – это произведение силы F на расстояние l:

На плечи весов действует сила, создаваемая весом точек-“грузов”. Обозначив расстояния от грузов до точки опоры l1 и l2, получим:

Точки-“грузы” отличаются только координатой на оси. Будем считать их вес одинаковым. Тогда:

Обозначив m координату точки опоры весов, получим:

Аналогично из формулы равенства моментов для произвольного количества N точек-“грузов” с одинаковым весом w выводится формула среднего арифметического. Равенство моментов для обоих плеч весов:

Координата опоры весов m:

Формула среднего арифметического дает координату точки опоры весов, находящихся в равновесии.

Визуальное восприятие равновесия

Равновесие в изобразительном искусстве играет важнейшую роль. Если при создании картины не достигнуто равновесие ее элементов, то произведение не будет законченным. В каждой картине художник создает равновесие различных визуальных сил.

Рудольф Арнхейм отмечает, что человеческое зрение способно обнаруживать малейшие отклонения от центра равновесия в изображении:

На приведенном примере слева круг находится в состоянии равновесия, а справа нет. Несмотря на то, что точка равновесия (центр квадрата) никак не отмечена на рисунке, человек с большой точностью может определить, находится ли круг в этой точке или нет.

Несмотря на то, что точка равновесия может быть не изображена, человек воспринимает ее как часть визуальной структуры:

Аналогично и среднее арифметическое: необязательно входит в набор чисел, но значимо для его восприятия и оценки.

Математическое ожидание случайной величины

Для случайной величины аналогом среднего арифметического служит математическое ожидание. Вероятность при этом можно считать весом точки-“груза”. Формула равенства моментов с разными весами:

Теперь точка опоры весов в равновесии это μ:

Сумма всех вероятностей равна 1. Следовательно, и сумма весов равна 1. Тогда формула координаты точки весов в равновесии равна:

Это и есть формула математического ожидания.

Гистограмма

Гистограмма – это визуализация (геометрическое изображение) значений переменной величины с учетом вероятностей. Гистограмма показывает для выборки значений, какие из них появляются часто, какие реже, а какие совсем редко.

На гистограмме возможные значения откладываются по горизонтальной оси, а веса – по вертикальной. Диапазон значений по вертикали очевиден – от 0 до 1 (значения вероятности). По горизонтали диапазон должен включать ожидаемые значения переменной.

Гистограмма представляет собой простую картину (экземпляр изобразительного искусства). Зритель ожидает, что точка равновесия множества значений будет ровно посередине гистограммы:

Исходя из этого должен подбираться диапазон значений для горизонтальной оси гистограммы. Тогда сразу будет видно отклонение свойств выборки значений от ожидаемых:

Такого рода отклонение может быть вызвано выбросами. Выбросы – это значения, сильно отличающиеся от остальных. Благодаря правилу рычага, даже небольшое количество выбросов меняет точку равновесия и среднее арифметическое:

Дайте мне точку опоры, и я переверну Землю. Архимед

Выводы

  • Среднее арифметическое – интегральная характеристика набора числовых данных (выборки). Применяется как описательная характеристика в совокупности с другими.
  • Нормально, что среднее значение не входит в набор данных. Среднее арифметическое не может заменить полное описание полученной выборки.
  • Интервал значений гистограммы должен быть подобран таким образом, чтобы ожидаемое среднее арифметическое было посередине. Тогда будет сразу видно отклонение параметров выборки от ожидаемых значений.
  • Среднее арифметическое подвержено влиянию выбросов – значений, сильно отличающихся от остальных значений переменной величины.

Источник: https://habr.com/post/319168/

Среднее геометрическое

Что значит среднее арифметическое двух чисел. Как найти среднее арифметическое и среднее геометрическое чисел

Предлагаемая здесь программа, помимо расчета среднего геометрического, умеет еще и приводить исходные данные к стандартному виду, а так же упорядочивать их по возрастанию или убыванию…

Среднее геометрическое или среднее пропорциональное используется человечеством в архитектурных, землемерных и инженерных расчетах не менее 2500 лет. Об этом достоверно известно благодаря математическому трактату Евклида “Начала”.
В своей второй теореме Евклид доказывает, что в прямоугольном треугольнике высота проведенная из прямого угла (рисунок) делит противоположную сторону так что:

h =  

 d · e

Собственно говоря, благодаря второй теореме Евклида среднее геометрическое и получило свое название. В древнем мире математики ограничивалось только использованием корня квадратного (геометрия) и корня кубического (стереометрия).

Вообще говоря, извлечение корня с различными целыми показателями является частным случаем дробной степени. Но к такому пониманию этих алгебраических операции математики подошли только в семнадцатом веке.

Неоценимый вклад в достижении обобщенного понимания степенных алгебраических операции внес Рене Декарт.

В свете современных представлений:

Среднее геометрическое значение множества положительных вещественных чисел определяется как результат взаимного умножения этих чисел и извлечения из произведения корня с показателем равным количеству чисел:

aср.геом = n

 a1 · a2 · … · an
 

  =  

Таким образом, мы имеем дело исключительно с положительными вещественными числами и находим такое число, что при замене каждого из этих чисел их произведение не изменяется.
 

Расчет среднего геометрического

Для того чтобы начать онлайн расчет среднего геометрического введите исходные числа в одно из полей ввода-вывода данных.

В первое поле можно ввести последовательность чисел, разделенных точкой с запятой (программа попытается так же преобразовать к стандартному виду, например, вставленную копию последовательности чисел с плавающей точкой, разделенных пробелами, запятой или точкой с запятой).

Во второе поле можно вводить числа по одному – они автоматически будут добавляться к данным первого поля, если расчет не запустился автоматически, кликните по зеленой кнопке, показывающей количество чисел в исследуемом массиве:

Design by Sergey Ov for abc2home.ru

ВНИМАНИЕ! При перезагрузке страницы введенная информация не сохраняется, если Вы не сгенерировали код для записи результатов работы в командной строке:

Сохранить расчет среднего геометрического в истории браузера

Адресную строку с кодом из Ваших данных Вы можете переслать на любое устройство и воспроизвести на нем результаты расчетов

После того как будут введены хотя бы два исходных числа, цвет квадратной кнопки на поле ввода данных должен поменяться с оранжевого на зеленый, и автоматически начнется расчет среднего геометрического и сопутствующих параметров, если это не произошло, то кликните по зеленому полю кнопки.

  • Среднее арифметическое – расчет онлайн, определение, формула
  • Среднеквадратическое отклонение – расчет онлайн, определение, формула
  • Среднее геометрическое – расчет онлайн, определение, формула
  • Среднее гармоническое и среднее степенное – расчет онлайн, определения, формулы
  • Среднее квадратическое – расчет онлайн, определение, формула

Свойства среднего геометрического

1. Среднее геометрическое значение множества заданных неотрицательных чисел лежит между минимальным и максимальным числами из этого множества.

2. Кроме того среднее геометрическое подчиняется неравенству о средних для множества положительных вещественных чисел

amin   ≤   aср. гарм   ≤   aср. геом   ≤   aср. арифм   ≤   a ср.квадр ≤   a max [2] ,

то есть для любого множества положительных чисел среднее геометрическое никогда не бывает больше среднего арифметического [1]:

  n

 a1 · a2 · … · an
 

 ≤  

a1+ a2+ …+ an n
 

Прикладное значение среднего геометрического

Среднее геометрическое широко используется в демографической статистике, моделирований социального развития общества.
С применением среднего геометрического в экономике расcчитываются финансовые индексы, в физике – коэффициент преломления антибликового напыления, а в вычислительной математике осуществляется сглаживание шумов.

P.S. На этой странице используется Бета версия программы расчета среднего геометрического, об обнаруженных недочетах, а так же возможных пожеланиях просьба сообщить на форум сайта (окно для входа на форум находится в нижней части страницы).

1. Среднее арифметическоезначение (чаще используется термин, просто, “среднее арифметическое” или “среднее”) множества заданных чисел определяется как число равное сумме всех чисел множества, делённой на их количество:

aср.арифм =  

a1+ a2+ …+ an n
 

2. Среднее степенное значение   sd  порядка (степени) d от множества заданных чисел a1+ a2+ …+ an определяется формулой:

sd = 

(

)

1
d

Среднее арифметическое является степенным средним c d = 1, среднее квадратическое – d = 2, среднее гармоническое можно считать степенным средним порядка d = -1.

Статьи Блог Копилка ✔ Среднее геометрическое – расчет онлайн

Источник: http://www.abc2home.ru/blog/srednee_geometricheskoe.html

WikiMedForum.Ru
Добавить комментарий