Как найти координаты вектора зная его длину. Векторы для чайников. Действия с векторами. Координаты вектора. Простейшие задачи с векторами

Занятие на тему: Векторы в пространстве. Простейшие задачи в координатах

Как найти координаты вектора зная его длину. Векторы для чайников. Действия с векторами. Координаты вектора. Простейшие задачи с векторами

Занятие

Тема: Векторы в пространстве. Простейшие задачи в координатах.

Количество часов: 2 часа

Цель: рассмотреть разложение вектора по трем векторам в пространстве и обозначение координат вектора, ввести новые понятия: координатный вектор (базис) и радиус-вектор, рассмотреть три свойства векторов по координатам, разобрать две задачи на свойства векторов.

План:

1. Разложение вектора по трем векторам в пространстве.

2. Координаты вектора в пространстве.

3. Сложение, вычитание векторов, умножение вектора на число.

4. Решение задач на свойства векторов.

Вопрос 1. Разложение вектора по трем векторам в пространстве.

Начертим прямоугольную систему координат в пространстве Oxyz. Зададим в пространстве прямоугольную систему координат Oxyz. На каждой из положительных полуосей отложим от начала координат единичный вектор, т. е. вектор, длина которого равна единице.

Обозначим единичный вектор оси абсцисс, единичный вектор оси ординат , и единичный вектор оси аппликат  (см. рис. 1). Эти векторы сонаправлены с направлениями осей, имеют единичную длину и ортогональны – попарно перпендикулярны.

Такие вектора называют координатными векторами или базисом.

Рис. 1. Разложение вектора по трем координатным векторам

Вопрос 2. Координаты вектора в пространстве.

Возьмем вектор , поместим его в начало координат, и разложим этот вектор по трем некомпланарным – лежащим в разных плоскостях –  векторам. Для этого опустим проекцию точки M на плоскость Oxy, и найдем координаты векторов ,  и . Получаем: . Рассмотрим по отдельности каждый из этих векторов.

Вектор  лежит на оси Ox, значит, согласно свойству умножения вектора на число, его можно представить как какое-то число x умноженное на координатный вектор . , а длина вектора ровно в x раз больше длины .

Так же поступим и с векторами  и , и получаем разложение вектора по трем координатным векторам:

Коэффициенты этого разложения x, y и z называются координатами вектора в пространстве.

Вопрос 3. Сложение, вычитание векторов, умножение вектора на число.

Рассмотрим правила, которые позволяют по координатам данных векторов найти координаты их суммы и разности, а также координаты произведения данного вектора на данное число.

;  

1) Сложение: 

2) Вычитание:  

3) Умножение на число: , 

Вектор, начало которого совпадает с началом координат, называется радиусвектором.(Рис. 2). Вектор – радиус-вектор, где x, y и z – это коэффициенты разложения этого вектора  по координатным векторам , , .

В данном случае x – это первая координата точки A на оси Ox, y – координата точки B на оси Oy, z – координата точки C на оси Oz. По рисунку видно, что координаты радиус-вектора одновременно являются координатами точки М.

Рис. 2.

Возьмем точку A(x1;y1;z1) и точку B(x2;y2;z2) (см. рис. 3). Представим вектор как разность векторов  и по свойству векторов.

Причем,  и – радиус-векторы, и их координаты совпадают с координатами концов этих векторов. Тогда мы можем представить координаты вектора  как разность соответствующих координат векторов  и : .

Таким образом, координаты вектора мы можем выразить через координаты конца и начала вектора.

Рис. 3.

Вопрос 4. Решение задач на свойства векторов.

Рассмотрим примеры, иллюстрирующие свойства векторов и их выражение через координаты. Возьмем векторы , , . Нас спрашивают вектор . В данном случае найти  это значит найти координаты вектора , которые полностью его определяют. Подставляем в выражение вместо векторов соответственно их координаты. Получаем:

Теперь умножаем число 3 на каждую координату в скобках, и то же самое делаем с 2:

У нас получилась сумма трех векторов, складываем их по изученному выше свойству:

Ответ: 

Пример №2.

Дано: Треугольная пирамида AOBC (см. рис. 4). Плоскости AOB, AOC и OCB – попарно перпендикулярны. OA=3, OB=7, OC=4; M – сер.AC; N – сер.OC; P – сер. CB.

Найти: ,,,,,,,.

Рис. 4.

Решение: Введем прямоугольную систему координат Oxyz с началом отсчета в точке O. По условию обозначаем точки A, B и C на осях и середины ребер пирамиды – M, P и N. По рисунку находим координаты вершин пирамиды: A(3;0;0), B(0;7;0), C(0;0;4).

Так как координаты вектора  –  это разность координат его конца и начала, получаем:. Таким же образом находим координаты векторов и . ; .

Чтобы найти координаты вектора , нужно сначала найти координаты точек M и N. По рисунку видно, что точка N имеет координаты, так как она лежит на оси аппликат. Рассмотрим . MN – средняя линия, .

Значит координата точки M по оси Oz 2. Теперь проведем из точки M перпендикуляр к оси Ox, координата 1,5. Точка M лежит в плоскости Oxz, значит по оси Oy координата 0. Получаем M(1,5;0;2).

Теперь зная координаты точек M и N, считаем их разность: .

Теперь найдем координаты точки P. Опустим перпендикуляр на плоскость Oxy, получаем значение 3,5 по оси ординат. И проведя перпендикуляр к оси Oz, получаем значение 2 по оси аппликат. Точка P имеет координаты (0;3,5;2). Зная координаты нужных точек, найдем координаты оставшихся векторов.

;

.

Вектора  и  – радиус-векторы, значит, их координаты равны координатам концов этих векторов: , . 

Вопросы для самопроверки:

1. Что называют базисом?

2. Что называют координатами вектора в пространстве?

3. Что такое радиус – вектор?

Список литературы и ссылки на Интернет-ресурсы, содержащие информацию по теме:

1. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия. 10-11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни – М.: Просвещение, 2014. – 455 с.: ил.

2.Александров А.Д., Вернер А.Л., Рыжик В.И. Геометрия. 11 класс: учеб. для общеобразоват. организаций: углубл. уровень – М.: Просвещение, 2014. – 271 с.: ил.

3. Yaklass.ru (Источник).

4. Mathematics.ru (Источник).

Источник: https://infourok.ru/zanyatie-na-temu-vektori-v-prostranstve-prosteyshie-zadachi-v-koordinatah-695439.html

Векторы на ЕГЭ по математике. Действия над векторами

Как найти координаты вектора зная его длину. Векторы для чайников. Действия с векторами. Координаты вектора. Простейшие задачи с векторами

Стандартное определение: «Вектор — это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?

А в самом деле, что такое векторы и зачем они?
Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.

Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением — «сколько килограмм» или «сколько джоулей».

Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.

Скорость, сила, ускорение — векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения направлено к поверхности Земли, а величина его равна 9,8 м/с2. Импульс, напряженность электрического поля, индукция магнитного поля — тоже векторные величины.

Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:

Вот другой пример.
Автомобиль движется из A в B. Конечный результат — его перемещение из точки A в точку B, то есть перемещение на вектор .

Теперь понятно, почему вектор — это направленный отрезок. Обратите внимание, конец вектора — там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: или

До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы — новое понятие. Это другой класс математических объектов. Для них свои правила.

Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
Теперь мы знакомимся с векторами.

Понятия «больше» и «меньше» для векторов не существует — ведь направления их могут быть разными. Сравнивать можно только длины векторов.

А вот понятие равенства для векторов есть.
Равными называются векторы, имеющие одинаковые длины и одинаковое направление. Это значит, что вектор можно перенести параллельно себе в любую точку плоскости.
Единичным называется вектор, длина которого равна 1. Нулевым — вектор, длина которого равна нулю, то есть его начало совпадает с концом.

Удобнее всего работать с векторами в прямоугольной системе координат — той самой, в которой рисуем графики функций. Каждой точке в системе координат соответствуют два числа — ее координаты по x и y, абсцисса и ордината.
Вектор также задается двумя координатами:

Здесь в скобках записаны координаты вектора – по x и по y.
Находятся они просто: координата конца вектора минус координата его начала.

Если координаты вектора заданы, его длина находится по формуле

Сложение векторов

Для сложения векторов есть два способа.

1. Правило параллелограмма. Чтобы сложить векторы и , помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторов и .

Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.

2. Второй способ сложения векторов — правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и .

По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.

Представьте, что вы идете из пункта А в пункт В, из В в С, из С в D, затем в Е и в F. Конечный результат этих действий — перемещение из А в F.

При сложении векторов и получаем:

Вычитание векторов

Вектор направлен противоположно вектору . Длины векторов и равны.

Теперь понятно, что такое вычитание векторов. Разность векторов и – это сумма вектора и вектора .

Умножение вектора на число

При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины . Он сонаправлен с вектором , если k больше нуля, и направлен противоположно , если k меньше нуля.

Скалярное произведение векторов

Векторы можно умножать не только на числа, но и друг на друга.

Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.

Обратите внимание — перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов — силы и перемещения:

Если векторы перпендикулярны, их скалярное произведение равно нулю.
А вот так скалярное произведение выражается через координаты векторов и :

Из формулы для скалярного произведения можно найти угол между векторами:

Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто векторным методом задача 14 решается в несколько раз быстрее, чем классическим.

В школьной программе по математике изучают только скалярное произведение векторов.
Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике, знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.

Векторы — полезнейший математический инструмент. В этом вы убедитесь на первом курсе.

Этот курс заменяет полгода занятий с репетитором. Он включает в себя всю часть 1 и задачу 13. Просто, понятно и доступно. Автор – репетитор-профессионал Анна Георгиевна Малкова.
Данного видеокурса достаточно для того, чтобы сдать ЕГЭ на «5».

Внимание! Мега-распродажа! Именно сейчас вы можете получить все 5 дисков видеокурса по минимальной цене 5000 2500 рублей. Количество комплектов ограничено. Не опоздайте!
Заказать

Источник: https://ege-study.ru/ru/ege/materialy/matematika/vektory-na-ege-po-matematike-v-zadache-v6-dejstviya-nad-vektorami/

WikiMedForum.Ru
Добавить комментарий