Как организовать катодную защиту трубопроводов от коррозии? Принцип действия катодной защиты

Электрохимическая защита трубопроводов от коррозии — электронный каталог продукции,разработка мобильных приложений,АОС,автоматизированные обучающие системы,семинары по нефтегазовой тематике,разработка СТУ,СТУ

Как организовать катодную защиту трубопроводов от коррозии? Принцип действия катодной защиты

Электрохимическая защита от коррозии состоит из катодной и дренажной защиты. Катодная защита трубопроводов осуществляется двумя основными методами: применением металлических анодов-протекторов (гальванический протекторный метод) и применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс – с анодным заземлением (электрический метод).

Рис. 1. Принцип работы катодной защиты

Гальваническая протекторная защита от коррозии

Наиболее очевидным способом осуществления электрохимической защиты металлического сооружения, имеющего непосредственный контакт с электролитической средой, является метод гальванической защиты, в основу которого положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы.

Таким образом, если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом-протектором и будет разрушаться, защищая металл с менее отрицательным потенциалом. Протекторы, по существу, служат портативными источниками электроэнергии.

В качестве основных материалов для изготовления протекторов используются магний, алюминий и цинк. Из сопоставления свойств магния, алюминия и цинка видно, что из рассматриваемых элементов магний обладает наибольшей электродвижущей силой.

В то же время одной из наиболее важных практических характеристик протекторов является коэффициент полезного действия, показывающий долю массы протектора, использованной на получение полезной электрической энергии в цепи. К.П.Д.

протекторов, изготовленных из магния и магниевых сплавов, редко превышают 50 % в, в отличие от протекторов на основе Zn и Al с К.П.Д. 90 % и более.

Рис. 2. Примеры магниевых протекторов

Обычно протекторные установки применяются для катодной защиты трубопроводов, не имеющих электрических контактов со смежными протяженными коммуникациями, отдельных участков трубопроводов, а также резервуаров, стальных защитных кожухов (патронов), подземных резервуаров и емкостей, стальных опор и свай, и других сосредоточенных объектов.

В то же время протекторные установки очень чувствительны к ошибкам в их размещении и комплектации. Неправильный выбор или размещение протекторных установок приводит к резкому снижению их эффективности.

Катодная защита от коррозии

Наиболее распространенный метод электрохимической защиты от коррозии подземных металлических сооружений – это катодная защита, осуществляемая путем катодной поляризации защищаемой металлической поверхности.

На практике это реализуется путем подключения защищаемого трубопровода к отрицательному полюсу внешнего источника постоянного тока, называемого станцией катодной защиты. Положительный полюс источника соединяют кабелем с внешним дополнительным электродом, сделанным из металла, графита или проводящей резины.

Этот внешний электрод размещается в той же коррозионной среде, что и защищаемый объект, в случае подземных промысловых трубопроводов, в почве.

Таким образом, образуется замкнутая электрическая цепь: дополнительный внешний электрод – почвенный электролит – трубопровод – катодный кабель – источник постоянного тока – анодный кабель.

В составе данной электрической цепи трубопровод является катодом, а дополнительный внешний электрод, присоединенный к положительному полюсу источника постоянного тока, становится анодом. Данный электрод называется анодным заземлением. Отрицательно заряженный полюс источника тока, присоединенный к трубопроводу, при наличии внешнего анодного заземления катодно поляризует трубопровод, при этом потенциал анодных и катодных участков практически выравнивается.

Таким образом, система катодной защиты состоит из защищаемого сооружения, источника постоянного тока (станции катодной защиты), анодного заземления, соединительных анодной и катодной линий, окружающей их электропроводной среды (почвы), а также элементов системы мониторинга – контрольно-измерительных пунктов.

Дренажная защита от коррозии

Дренажная защита трубопроводов от коррозии блуждающими токами  осуществляется путем направленного отвода этих токов к источнику или в землю. Установка дренажной защиты может быть нескольких видов: земляной, прямой, поляризованный и усиленный дренажи.

Рис. 3. Станция дренажной защиты

Земляной дренаж осуществляется заземлением трубопроводов дополнительными электродами в местах их анодных зон, прямой дренаж – созданием электрической перемычки между трубопроводом и отрицательным полюсом источника блуждающих токов, например рельсовой сетью электрифицированной железной дороги. Поляризованный дренаж в отличие от прямого обладает только односторонней проводимостью, поэтому при появлении положительного потенциала на рельсах дренаж автоматически отключается. В усиленном дренаже дополнительно в цепь включается преобразователь тока, позволяющий увеличивать дренажный ток.

P.S. Обзор технических решений по ЭХЗ других металлических конструкций и сооружений можно прочитать здесь.

Скачайте наше специализированное учебно-справочное приложение «Защита от коррозии»

Источник: //transenergostroy.ru/blog/elektrohimicheskaya_zashhita_truboprovodov_ot_korrozii.html

Варианты катодной защиты трубопроводов – преимущества и недостатки способов

Как организовать катодную защиту трубопроводов от коррозии? Принцип действия катодной защиты

До сих пор при обустройстве протяжённых промышленных трубопроводов наиболее востребованным материалом изготовления труб является сталь.

Обладая множеством замечательных свойств, таких как механическая прочность, способность функционировать при больших значениях внутренних давления и температуры и стойкость к сезонным изменениям погоды, сталь имеет и серьёзный недостаток: склонность к коррозии, приводящей к разрушению изделия и, соответственно, неработоспособности всей системы.

Один из способов защиты от этой угрозы – электрохимический, включающий катодную и анодную защиту трубопроводов; об особенностях и разновидностях катодной защиты будет рассказано ниже.

Определение электрохимической защиты

Электрохимическая защита трубопроводов от коррозии – процесс, осуществляемый при воздействии постоянного электрического поля на предохраняемый объект из металлов или сплавов. Поскольку обычно доступен для работы переменный ток, используются специальные выпрямители для преобразования его в постоянный.

В случае катодной защиты трубопроводов защищаемый объект путём подачи на него электромагнитного поля приобретает отрицательный потенциал, то есть делается катодом.

Соответственно, если ограждаемый от коррозии отрезок трубы становится «минусом», то заземление, подводящееся к нему, – «плюсом» (т.е. анодом).

Антикоррозионная защита по такой методике невозможна без присутствия электролитической, с хорошей проводимостью, среды. В случае обустройства трубопроводов под землёй её функцию выполняет грунт. Контакт же электродов обеспечивается путём применения хорошо проводящих электрический ток элементов из металлов и сплавов.

В ходе протекания процесса между средой-электролитом (в данном случае грунтом) и защищаемым от коррозии элементом возникает постоянная разница потенциалов, значение которой контролируется при помощи высоковольтных вольтметров.

Классификация методик электрохимической катодной защиты

Такой способ предупреждения коррозии был предложен в 20-х годах XIX века и поначалу использовался в судостроении: медные корпуса кораблей обшивались протекторами-анодами, значительно снижающими скорость корродирования металла.

После того, как была установлена эффективность новой технологии, изобретение стало активно применяться в других областях промышленности. Через некоторое время оно было признано одним из самых эффективных способов защиты металлов.

В настоящее время используется два основных типа катодной защиты трубопроводов от коррозии:

  1. Самый простой способ: к металлическому изделию, требующему предохранения от коррозии, подводится внешний источник электрического тока. В таком исполнении сама деталь приобретает отрицательный заряд и становится катодом, роль же анода выполняют инертные, не зависящие от конструкции, электроды.
  2. Гальванический метод. Нуждающаяся в защите деталь соприкасается с защитной (протекторной) пластиной, изготавливаемой из металлов с большими значениями отрицательного электрического потенциала: алюминия, магния, цинка и их сплавов. Анодами в этом случае становятся оба металлических элемента, а медленное электрохимическое разрушение пластины-протектора гарантирует поддержание в стальном изделии требуемого катодного тока. Через более или менее долгое время, в зависимости от параметров пластины, она растворяется полностью.

Характеристики первого метода

Этот способ ЭХЗ трубопроводов, в силу простоты, наиболее распространён. Применятся он для предохранения крупных конструкций и элементов, в частности, трубопроводов подземного и наземного типов.

Методика помогает противостоять:

  • питтинговой коррозии;
  • коррозии из-за присутствия в зоне расположения элемента блуждающих токов;
  • коррозии нержавеющей стали межкристального типа;
  • растрескиванию латунных элементов вследствие повышенного напряжения.

Характеристики второго метода

Эта технология предназначается, в отличие от первой, в том числе для защиты изделий небольших размеров. Методика наиболее популярна в США, в то время как в Российской Федерации используется редко.

Причина в том, что для проведения гальванической электрохимическая защита трубопроводов необходимо наличие на изделии изоляционного покрытия, а в России магистральные трубопроводы таким образом не обрабатываются.

Особенности ЭХЗ трубопроводов

Главной причиной выхода трубопроводов из строя (частичной разгерметизации или полного разрушения отдельных элементов) является коррозия металла.

В результате образования на поверхности изделия ржавчины на его поверхности появляются микроразрывы, раковины (каверны) и трещины, постепенно приводящие к выходу системы из строя.

Особенно эта проблема актуальна для труб, пролегающих под землёй и всё время соприкасающихся с грунтовыми водами.

Принцип действия катодной защиты трубопроводов от коррозии предполагает создание разности электрических потенциалов и реализуется двумя вышеописанными способами.

После проведения измерений на местности было установлено, что необходимый потенциал, при котором замедляется любой коррозионный процесс, составляет –0,85 В; у находящихся же под слоем земли элементов трубопровода его естественное значение равно –0,55 В.

Чтобы существенно замедлить процессы разрушения материалов, нужно добиться снижения катодного потенциала защищаемой детали на 0,3 В. Если добиться этого, скорость коррозии стальных элементов не будет превышать значений 10 мкм/год.

Одну из самых серьёзных угроз металлическим изделиям представляют блуждающие токи, то есть электрические разряды, проникающие в грунт вследствие работы заземлений линий энергопередачи (ЛЭП), громоотводов или передвижения по рельсам поездов. Невозможно определить, в какое время и где они проявятся.

Разрушающее воздействие блуждающих токов на стальные элементы конструкций проявляется, когда эти детали обладают положительным электрическим потенциалом относительно электролитической среды (в случае трубопроводов – грунта). Катодная методика сообщает защищаемому изделию отрицательный потенциал, в результате чего опасность коррозии из-за этого фактора исключается.

//www.youtube.com/watch?v=ZTmNyBKVcJ0

Оптимальным способом обеспечения контура электрическим током является использование внешнего источника энергии: он гарантирует подачу напряжения, достаточного для «пробивания» удельного сопротивления грунта.

Обычно в роли такого источника выступают воздушные линии энергопередачи с мощностями 6 и 10 кВт. В случае отсутствия на участке пролегания трубопровода ЛЭП следует использовать генераторы мобильного типа, функционирующие на газе и дизельном топливе.

Что нужно для катодной электрохимической защиты

Для обеспечения снижения коррозии на участках пролегания трубопроводов используются особые приспособления, называемые станциями катодной защиты (СКЗ).

Эти станции включают в себя следующие элементы:

  • заземление, выступающее в роли анода;
  • генератор постоянного тока;
  • пункт контроля, измерений и управления процессом;
  • соединительные приспособления (провода и кабели).

Станции катодной защиты вполне эффективно выполняют основную функцию, при подключении к независимому генератору или ЛЭП защищая одновременно несколько расположенных поблизости участков трубопроводов.

Регулировать параметры тока можно как вручную (заменяя трансформаторные обмотки), так и в автоматизированном режиме (в случае, когда в контуре имеются тиристоры).

Наиболее совершенной среди применяемых на территории РФ станций катодной защиты признаётся «Минерва-3000» (проект СКЗ по заказу «Газпрома» был создан французскими инженерами). Одна такая станция позволяет обеспечить безопасность около 30 км пролегающего под землей трубопровода.

Плюсы «Минервы-3000»:

  • высокий уровень мощности;
  • возможность быстрого восстановления после возникновения перегрузок (не более 15 секунд);
  • оснащённость необходимыми для контроля рабочих режимов узлами цифровой регулировки системы;
  • абсолютно герметичные ответственные узлы;
  • возможность контролировать функционирование установки удалённо, при подключении специального оборудования.

Вторая наиболее популярная в России СКЗ – «АСКГ-ТМ» (адаптивная телемеханизированная станция катодной защиты). Мощность таких станций меньше, чем упомянутых выше (от 1 до 5 кВт), но их возможности автоматического контроля работы улучшены за счёт наличия в исходной комплектации телеметрического комплекса с дистанционным управлением.

Обе станции требуют источника напряжения мощностью 220 В, управляются с помощью модулей GPRS и характеризуются достаточно скромными габаритами – 500×400×900 мм при весе 50 кг. Срок эксплуатации СКЗ – от 20 лет.

Источник: //trubaspec.com/montazh-i-remont/varianty-katodnoy-zashchity-truboprovodov-preimushchestva-i-nedostatki-sposobov.html

Катодная защита от коррозии. Принцип действия, основные понятия

Как организовать катодную защиту трубопроводов от коррозии? Принцип действия катодной защиты

Больше 15 лет я разрабатываю станции катодной защиты. Требования к станциям четко формализованы. Есть определенные параметры, которые должны быть обеспечены. А знание теории защиты от коррозии совсем не обязательно. Гораздо важнее знание электроники, программирования, принципов конструирования электронной аппаратуры.

Создав этот сайт, я не сомневался, что когда-нибудь там появится раздел катодная защита. В нем я собираюсь писать о том, что я хорошо знаю, о станциях катодной защиты. Но как-то не поднимается рука писать о станциях, не рассказав, хотя бы коротко, о теории электрохимической защиты. Постараюсь рассказать о таком сложном понятии как можно проще, для не профессионалов.

История развития катодной защиты настолько занимательная глава, что я изложил ее в отдельной статье. Она не имеет практического значения. Просто интересно.

Для того чтобы защитится от коррозии, надо понять, что такое коррозия, природу ее происхождения.

Электрохимическая коррозия.

Коррозию можно определить как реакцию материала с окружающей средой, вызывающую в нем ощутимые изменения.

Изменения – понятие расплывчатое. Поэтому существует понятие коррозионного повреждения, основными признаками которого является нарушение функционирования объекта, например разрушение все той же металлической трубы. Не все реакции ведут к повреждению. Если труба станет коричневой или зеленой, но не будет протекать, это не будет считаться коррозионным повреждением.

Материалы и окружающая среда бывают разными. Бывают разными и реакции между ними.  В основе коррозии могут лежать чисто химические реакции. Но вряд ли кого-либо заинтересует коррозия висмута в растворе дигидрофосфата натрия. Гораздо важнее знать о коррозии железной трубы, закопанной в землю.

Так вот, практический интерес имеет коррозия металлических материалов в водных средах, т.е. электрохимическая коррозия. В основе ее лежат реакции, имеющие электрохимическую природу.

В детстве я был любознательным мальчиком. Я проводил опыты по гальваническому осаждению меди на железные предметы, чем удивлял своих одноклассников. Но еще больше я поразил их, когда принес в школу лезвие от безопасной бритвы с вырезанной на нем сквозной надписью. Эффект я усилил сказав, что сделал это лазером.

Конечно, я просто покрыл лезвие лаком, иголкой выцарапал надпись, опустил в жестяную банку с раствором соли, подключил электрический ток и немного подождал. Теперь я понимаю, что мои детские опыты были иллюстрацией того, как происходит электрохимическая коррозия и как от нее защититься.

(Рассказ о моих детских опытах не художественный вымысел, а чистая правда.)

Итак, объекты процесса электрохимической коррозии:

  • среда – раствор электролита (почва всегда влажная, поэтому это тоже раствор электролита);
  • граница раздела среда-металл;
  • металл.

Все перечисленные объекты способны проводить электрический ток, обладают хорошей электропроводностью. В растворе электролита содержатся анионы и катионы. Они создают электрический ток.

Ток протекает через участок металл – раствор электролита. За счет этого тока на границе раздела происходит электрохимическая реакция, на которую могут влиять еще и внешние токи.

Влиять они могут по-разному, как усиливать коррозию, так и замедлять ее.

За счет тока на границе образуется разность потенциалов. Ее невозможно измерить. Поэтому измеряют потенциал специального электрода сравнения. Он является своеобразным суммарным показателем электрохимической реакции.

Физическое объяснение электрохимической коррозии выглядит так. В металле присутствуют ионы железа (положительно заряженные) и электроны (с отрицательным зарядом). Оба компонента реагируют с раствором электролита.

  • При положительном токе металл переходит в раствор, что связано с  прохождения ионов и вызывает потерю массы металла (растворение металла).
  • При отрицательном токе в раствор проходят электроны, и происходит это без потери массы металла.

В первом случае происходит анодная, а во втором случае – катодная электрохимические реакции. Анодная реакция (растворение металла) вызывает коррозию. Катодная реакция является процессом обратным коррозии и используется в гальванотехнике для нанесения гальванических покрытий.

Принцип действия катодной защиты.

Понятно, что для защиты объекта от коррозии необходимо вызвать катодную реакцию и не допустить анодную. Сделать это можно, если искусственно создать отрицательный потенциал на защищаемом объекте.

Для этого необходимо разместить в среде (почве) анодные электроды и подключить внешний источник тока: минус к объекту защиты, а плюс – к анодным  электродам. Ток пойдет по цепи анодный электрод – почвенный электролит – объект защиты от коррозии.

С точки зрения гальванических процессов металлический объект будет катодом, а дополнительный электрод – анодом.

Таким образом, коррозия объекта прекратится. Разрушаться будет только анодный электрод. Он называются анодным заземлением. Анодные электроды делают из инертного материала и периодически меняют.

Станция катодной защиты.

Ток для катодной защиты вырабатывает специальное устройство – станция катодной защиты.

По сути это источник вторичного электропитания, специализированный блок питания. Т.е. станция подключается к питающей сети (как правило ~ 220 В) и вырабатывает электрический ток с заданными параметрами.

Вот пример схемы системы электрохимической защиты подземного газопровода с помощью станции катодной защиты ИСТ-1000.

Станция катодной защиты установлена на поверхности земли, вблизи от газопровода. Т.к. станция эксплуатируется на открытом воздухе, то она должна иметь исполнение IP34 и выше. В этом примере используется современная станция, с контроллером GSM телеметрии и функцией стабилизации потенциала.

В принципе, станции катодной защиты бывают очень разными. Они могут быть трансформаторными или инверторными. Могут быть источниками тока, напряжения, иметь различные режимы стабилизации, различные функциональные возможности.

Станции прошлых лет это громадные трансформаторы с тиристорными регуляторами. Современные станции это инверторные преобразователи с микропроцессорным управлением и GSM телемеханикой.

Выходная мощность устройств катодной защиты, как правило, находится в диапазоне 1 – 3 кВт, но может доходить и до 10 кВт. Станциям катодной защиты и их параметрам посвящена отдельная статья.

Нагрузкой для устройства катодной защиты является электрическая цепь: анодное заземление – почва – изоляция металлического объекта. Поэтому требования к выходным энергетическим параметрам станций, прежде всего, определяют:

  • состояние анодного заземления (сопротивление анод-почва);
  • почва (сопротивление грунта);
  • состояние изоляции объекта защиты от коррозии (сопротивление изоляции объекта).

Все параметры станции определяются при создании проекта катодной защиты:

  • рассчитываются параметры трубопровода;
  • определяется величина защитного потенциала;
  • рассчитывается сила защитного тока;
  • определяется длина защитной зоны;
  • выбирается место установки станции;
  • определяется тип, место расположения и параметры анодного заземления;
  • окончательно рассчитываются параметры станции катодной защиты.

Применение.

Катодная защита от коррозии получила широкое распространение для электрохимической защиты:

  • подземных газопроводов и нефтепроводов;
  • трубопроводов теплосетей и водоснабжения;
  • оболочек электрических кабелей;
  • крупных металлических объектов, резервуаров;
  • подземных сооружений;
  • морских судов от коррозии в воде;
  • стальной арматуры в железобетонных сваях, в фундаментах.

Применение катодной защиты обязательно для газопроводов низкого и среднего давления, магистральных газопроводов, нефтепроводов.

Источник: //mypractic.ru/katodnaya-zashhita-ot-korrozii.html

Защита трубопровода от коррозии

Как организовать катодную защиту трубопроводов от коррозии? Принцип действия катодной защиты

Трубопроводные магистрали сегодня являются наиболее распространенным средством для осуществления доставки носителей энергии. К сожалению, у них есть существенный недостаток – они подвержены образованию ржавчины. Чтобы избежать появления коррозии на магистральных трубопроводах, выполняют катодную защиту. В чем же заключается ее принцип действия?

В наши дни существует много способов защиты водопроводов от коррозии. Суть их проста: металл, из которого изготовлены трубы, вступает в реакцию с определенными растворами и веществами. Результатом процесса становится образование небольшой защитной пенки.

Специалистами выделяются следующие методы защиты трубопроводов от коррозии:

Электрохимическая защита

Достаточно результативный способ защиты металлоконструкций от электрохимической коррозии. Иногда воссоздать лакокрасочную оболочку или защитное оберточное покрытие просто невозможно. Вот в таких случаях и уместно применение электрохимической защиты. 

Восстановление покрытия трубопровода, расположенного под землей, или днища морского судна – процесс достаточно трудоемкий и дорогой, а в некоторых случаях и невозможный. Благодаря электрохимической защите изделие будет надежно защищено от коррозии: покрытия подземных трубопроводов, днищ судов, всевозможных резервуаров не будут разрушаться.

  • Используется метод в ситуациях, когда потенциал свободной коррозии пребывает в области усиленного распада основного металла или перепассивации. То есть, когда металлоконструкция интенсивно разрушается.
  • При электрохимической защите к изделию из металла подключают постоянный электрический ток. Благодаря ему на поверхности металлической конструкции образуется катодная поляризация электродов микрогальванических пар и анодные области становятся катодными. А вследствие негативного влияния коррозии разрушается не металл, а анод.
  • Электрохимическая защита может быть анодной или катодной: это будет зависеть от того, в какую сторону сдвинется потенциал металла (в положительную или в отрицательную).

Катодная защита

Метод, достаточно часто используемый для защиты металлоконструкций от коррозии. Применяется в тех случаях, когда металл не имеет склонности к пассивации.

Суть метода проста: к изделию подается внешний электроток от отрицательного полюса, который обеспечивает поляризацию катодных участков коррозионных составляющих и поднимает значение потенциала до анодных.

После прикрепления положительного полюса источника тока к аноду коррозия защищаемого изделия становится почти нулевой.

Анод требует периодической замены, так как со временем происходит его разрушение. 

  • Способы катодной защиты: поляризация от внешнего источника электротока, торможение развития катодного процесса, связь с металлом, имеющим более электроотрицательный потенциал свободной коррозии в определенной среде (протекторная защита).
  • С помощью поляризации от внешнего источника электротока защищают конструкции, находящиеся в почве и в воде, цинк, олово, алюминий и его сплавы, титан, медь и ее сплавы, свинец, высокохромистые, углеродистые, низколегированные и высоколегированные стали.
  • Роль внешнего источника электротока выполняют станции катодной защиты. Их главные составляющие – выпрямитель, токоподвод к защищаемому объекту, анодные заземлители, электрод сравнения и анодный кабель.
  • Катодная защита может быть использована в качестве самостоятельного или дополнительного способа коррозионной защиты.

Основной показатель результативности метода – защитный потенциал. Защитным называют тот потенциал, при котором быстрота коррозионного процесса металлического изделия становится минимальной. 

Однако катодная защита обладает определенными недостатками. Один из них – опасность перезащиты. Такой эффект может наблюдаться в случае большого смещения потенциала защищаемого изделия в отрицательную сторону. Вследствие этого разрушаются защитные оболочки, начинается водородное охрупчивание металла, коррозионное растрескивание. 

Протекторная защита

Вид катодной защиты, в процессе которого к защищаемому объекту подсоединяют металл с более высоким электроотрицательным потенциалом. При этом разрушается не металлоконструкция, а протектор. Через определенный промежуток времени протектор корродирует и его потребуется заменить на новый. 

  • Эффект от протекторной защиты будет заметен только в том случае, если переходное сопротивление между протектором и окружающей средой незначительно. 
  • У каждого протектора есть свой радиус защитного действия – предельно возможное расстояние, на которое можно удалить протектор без утраты защитного эффекта. Протекторную защиту применяют, когда ток к объекту подвести трудно, дорого или просто невозможно.
  • С помощью протекторов защищают объекты, находящиеся в нейтральных средах (море, реке, воздухе, почве и т.д.).
  • Материалом для изготовления протекторов служит магний, цинк, железо, алюминий. Металлы в чистом виде не смогут стать эффективной защитой для конструкций, поэтому, изготавливая протекторы, их дополнительно легируют. 

Для изготовления железных протекторов используют углеродистые стали или чистое железо.

Анодная защита

Используется для титановых конструкций, объектов из низколегированных нержавеющих, углеродистых сталей, железистых высоколегированных сплавов, разнородных пассивирующихся металлов. Метод применяют в хорошо электропроводной коррозионной среде. 

При анодной защите происходит сдвиг потенциала защищаемого металла в более положительную сторону. Смещение будет длиться до тех пор, пока не достигнется инертное устойчивое состояние системы. К преимуществам анодной электрохимической защиты можно отнести не только существенное торможение скорости коррозии, но и то, что продукты коррозии не оказываются в производимом продукте и среде. 

  • Существует несколько способов реализации анодной защиты: можно сдвинуть потенциал в положительную сторону с помощью источника внешнего электротока или ввести в коррозионную среду окислители, которые способны повысить эффективность катодного процесса на металлической поверхности.    
  • Анодная защита с применением окислителей по защитному механизму имеет много общего с анодной поляризацией. 
  • При использовании пассивирующих ингибиторов с окисляющими характеристиками (бихроматов, нитратов и т.д.), защищаемая металлическая поверхность под воздействием возникшего тока становится пассивной. Однако эти вещества способны сильно загрязнять технологическую среду. 
  • Если ввести в сплав добавки, реакция восстановления деполяризаторов, которая происходит на катоде, пройдет не с таким большим перенапряжением, как на защищаемом металле. 
  • При прохождении электротока через защищаемую конструкцию потенциал сдвигается в положительную сторону. 
  • В состав установки для анодной электрохимической защиты входит источник внешнего электротока, электрод сравнения, катод и защищаемая конструкция. 

Для эффективности метода в той или иной среде используют легкопассивируемые металлы и сплавы. Кроме этого требуется высокое качество выполнения соединительных элементов и постоянное нахождение электрода сравнения и катода в растворе. 

Подход к проектированию схемы расположения катодов должен быть индивидуальным для каждого случая. 

Электрохимическую анодную защиту нержавеющих сталей используют для хранилищ серной кислоты, аммиачных растворов, минеральных удобрений, различных сборников, цистерн, мерников. 

Анодную защиту используют, чтобы предотвратить коррозию ванн химического никелирования и теплообменных установок в изготовлении искусственного волокна и серной кислоты. 

Электродренажная защита

Это способ защиты трубопроводов от разрушения с помощью блуждающих токов. Метод предусматривает их дренаж (отвод) с защищаемой конструкции на источник блуждающих токов или специальное заземление. 

  • Дренаж бывает прямым, поляризованным и усиленным. Прямой электрический дренаж – это дренажное устройство, имеющее двустороннюю проводимость. При величине тока, превышающей допустимую величину, выйдет из строя плавкий предохранитель. Электрический ток пойдет по обмотке реле, оно включится, после чего произойдет включение звука или света. 
  • Прямой электрический дренаж используют для тех трубопроводов, чей потенциал всегда выше потенциала рельсовой сети, служащей для отвода блуждающих токов. Иначе отвод станет каналом для натекания блуждающих токов на трубопровод. 
  • Поляризованный электрический дренаж является дренажным устройством, имеющим одностороннюю проходимость. Отличие поляризованного дренажа от прямого заключается в присутствии у первого элемента односторонней проводимости ВЭ. В случае поляризованного дренажа ток течет только в одном направлении – от трубопровода к рельсу. Это не позволяет блуждающим токам натекать на трубопровод по дренажному проводу. 
  • Усиленный дренаж используется тогда, когда требуется не только отвести блуждающие токи с трубопровода, но и создать на нем определенную величину защитного потенциала. Усиленный дренаж – это обычная катодная станция. Ее отрицательный полюс подсоединяют к защищаемой конструкции, а положительный – к рельсам электрифицированного транспорта, а не к анодному заземлению. 
  • Как только трубопровод введут в эксплуатацию, регулируют работу системы его защиты от коррозии. Если возникает необходимость, осуществляют подключение станций катодной и дренажной защиты и протекторных установок.

Использование какой-либо из технологий защиты промысловых, стальных и прочих видов трубопроводов от коррозии – обязательная составляющая их эксплуатации. Все методы антикоррозийной защиты требуется реализовывать в строгом соответствии с ГОСТом.

Источник: //www.kzit.ru/company/articles/zashchita_truboprovoda_ot_korrozii/

Катодная защита от коррозии трубопроводов: оборудование, принцип работы

Как организовать катодную защиту трубопроводов от коррозии? Принцип действия катодной защиты

Средства защиты от коррозии позволяют продлить срок службы металлической конструкции, а также сохранить ее технико-физические свойства в процессе эксплуатации. Несмотря на разнообразие методов обеспечения противокоррозийного действия, полностью уберечь объекты от поражения ржавчиной удается лишь в редких случаях.

Эффективность такой защиты зависит не только от качества протекторной технологии, но и от условий ее применения.

В частности, для сбережения металлической структуры трубопроводов свои лучшие свойства демонстрирует электрохимическая защита от коррозии, основанная на работе катодов.

Предотвращение образования ржавчины на подобных коммуникациях, разумеется, не единственная сфера применения данной технологии, но по совокупности характеристик это направление можно рассматривать как наиболее актуальное для электрохимической протекции.

Общие сведения об электрохимической защите

Защита металлов от ржавчины посредством электрохимического воздействия основывается на зависимости величины электродного потенциала материала от скорости процесса коррозии.

Металлические конструкции должны эксплуатироваться в том диапазоне потенциалов, где их анодное растворение будет ниже допустимого предела.

Последний, к слову, определяется технической документацией по эксплуатации сооружения.

На практике электрохимическая защита от коррозии предполагает подключение к готовому изделию источника с постоянным током.

Электрическое поле на поверхности и в структуре защищаемого объекта формирует поляризацию электродов, за счет которой управляется и процесс коррозийного поражения.

В сущности, анодные зоны на металлической конструкции становятся катодными, что позволяет смещать негативные процессы, обеспечивая сохранность структуры целевого объекта.

Принцип работы катодной защиты

Существует катодная и анодная защита электрохимического типа. Наибольшую популярность все же получила первая концепция, которая и применяется для защиты трубопроводов.

По общему принципу, при реализации данного метода к объекту подводится ток с отрицательным полюсом от внешнего источника.

В частности, таким образом может защищаться труба стальная или медная, в результате чего будет происходить поляризация катодных участков с переходом их потенциалов в анодное состояние. В итоге коррозийная активность защищаемой конструкции будет сведена практически к нулю.

При этом и катодная защита может иметь разные варианты исполнения. Широко практикуется вышеописанная техника поляризации от внешнего источника, но эффективно действует и метод деаэрации электролита с уменьшением скорости катодных процессов, а также созданием протекторного барьера.

Уже не раз отмечалось, что принцип катодной защиты реализуется за счет внешнего источника тока. Собственно, в его работе и заключается главная функция антикоррозийной защиты. Выполняют эти задачи специальные станции, которые, как правило, входят в общую инфраструктуру технического обслуживания трубопроводов.

Станции катодной защиты от коррозии

функция катодной станции заключается в стабильном обеспечении током целевого металлического объекта в соответствии с методом катодной поляризации. Используют такое оборудование в инфраструктуре подземных газо- и нефтепроводов, в трубах водоснабжения, тепловых сетях и т.д.

Существует множество разновидностей таких источников, при этом наиболее распространенное устройство катодной защиты предусматривает наличие в составе:

  • оборудования преобразователя тока;
  • провода для подводки к защищаемому объекту;
  • анодного заземлителя.

При этом существует разделение станций на инверторные и трансформаторные. Имеют место и другие классификации, но они ориентированы на сегментацию установок или по сферам применения, или же по техническим характеристикам и параметрам входных данных. Базовые принципы работы наиболее ярко иллюстрируют обозначенные два типа катодных станций.

Трансформаторные установки катодной защиты

Сразу следует отметить, что данный вид станций является устаревающим. На его смену как раз и приходят инверторные аналоги, которые имеют как плюсы, так и минусы. Так или иначе, трансформаторные модели применяются даже на новых пунктах обеспечения электрохимической защиты.

В качестве основы таких объектов используется низкочастотный трансформатор на 50 Гц и тиристорный преобразователь. Для системы управления тиристорами применяются простейшие устройства, среди которых фазоимпульсные регуляторы мощности. Более ответственный подход к решению задач управления предполагает использование контроллеров с широким функционалом.

Современная катодная защита от коррозии трубопроводов с таким оснащением позволяет регулировать параметры выходного тока, показатели напряжения, а также выравнивать защитные потенциалы. Что касается недостатков трансформаторного оборудования, то они сводятся к высокой степени пульсации тока на выходе при низком коэффициенте мощности. Объясняется этот изъян не синусоидой формой тока.

Решить проблему с пульсацией в определенной мере позволяет внедрение в систему низкочастотного дросселя, но его габариты соответствуют размерам самого трансформатора, что не всегда делает возможным такое дополнение.

Инверторная станция катодной защиты

Установки инверторного типа базируются на импульсных высокочастотных преобразователях. Одним из главных преимуществ от использования станций этого типа является высокий КПД, достигающий 95%. Для сравнения, у трансформаторных установок этот показатель в среднем достигает 80%.

Иногда на первый план выходят и другие достоинства. Например, небольшие габариты инверторных станций расширяют возможности для их применения на сложных участках. Есть и финансовые преимущества, которые подтверждает практика применения такого оборудования.

Так, инверторная катодная защита от коррозии трубопроводов быстро окупается и требует минимальных вложений в техническое содержание.

Впрочем, эти качества отчетливо заметны лишь при сравнении с трансформаторными установками, но уже сегодня появляются более эффективные новые средства обеспечения тока для трубопроводов.

Конструкции катодных станций

Такое оборудование представлено на рынке в разных корпусах, формах и габаритах. Конечно, распространена и практика индивидуального проектирования таких систем, что позволяет не только получить оптимальную для конкретных нужд конструкцию, но и обеспечить необходимые эксплуатационные параметры.

Строгий расчет характеристик станции позволяет в дальнейшем оптимизировать затраты на ее установку, транспортировку и хранение.

К примеру, для небольших объектов вполне подойдет катодная защита от коррозии трубопроводов на инверторной основе массой в 10-15 кг и мощностью 1,2 кВт.

Оборудование с такими характеристиками можно обслужить и легковым автомобилем, однако для масштабных проектов могут применяться и более массивные и тяжелые станции, требующие подключения грузовой техники, подъемного крана и бригад монтажников.

Особое внимание при разработке катодных станций уделяется защите самого оборудования. Для этого интегрируются системы, позволяющие предохранять станции от короткого замыкания и обрыва нагрузок. В первом случае используются специальные предохранители, позволяющие обрабатывать аварийные режимы работы установок.

Что касается скачков и обрывов напряжения, то станция катодной защиты вряд ли серьезно пострадает от них, но зато может возникнуть опасность поражения током. Например, если в обычном режиме оборудование эксплуатируется небольшим напряжением, то после обрыва скачок в показателях может довести до 120 В.

Другие виды электрохимической защиты

Помимо катодной защиты практикуются и технологии электрического дренажа, а также протекторные методы предотвращения коррозии. Наиболее перспективным направлением считается именно специальная протекция от образования коррозии.

В данном случае также к целевому объекту подключаются активные элементы, обеспечивающие преобразование поверхности с катодами посредством тока.

Например, труба стальная в составе газопровода может быть защищена цинковыми или алюминиевыми цилиндрами.

Заключение

Способы электрохимической защиты нельзя отнести к новым и, тем более, инновационным. Эффективность применения подобных методик в борьбе с процессами ржавления освоена давно. Однако, широкому распространению этого способа препятствует один серьезный недостаток.

Дело в том, что катодная защита от коррозии трубопроводов неизбежно вырабатывает так называемые блуждающие токи. Они не опасны для целевой конструкции, но могут оказывать негативное воздействие на близкорасположенные объекты.

В частности, блуждающий ток способствует развитию той же коррозии на металлической поверхности соседних труб.

Источник: //FB.ru/article/251051/katodnaya-zaschita-ot-korrozii-truboprovodov-oborudovanie-printsip-rabotyi

WikiMedForum.Ru
Добавить комментарий