Какими способами можно изменить внутреннюю энергию. Способы изменения внутренней энергии тела

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии – FIZI4KA

Какими способами можно изменить внутреннюю энергию. Способы изменения внутренней энергии тела

ОГЭ 2018 по физике ›

1. Существуют два вида механической энергии: кинетическая и потенциальная. Кинетической энергией обладает любое движущееся тело; она прямо пропорциональна массе тела и квадрату его скорости.

Потенциальной энергией обладают взаимодействующие между собой тела. Потенциальная энергия тела, взаимодействующего с Землёй, прямо пропорциональна его массе и расстоянию между
ним и поверхностью Земли.

Сумма кинетической и потенциальной энергии тела называется его полной механической энергией. Таким образом, полная механическая энергия зависит от скорости движения тела и от его положения относительно того тела, с которым оно взаимодействует.

Если тело обладает энергией, то оно может совершить работу. При совершении работы энергия тела изменяется. Значение работы равно изменению энергии.

2. Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать воздух (рис. 67), то через какое-то время пробка из банки вылетит и в банке образуется туман.

Это объясняется тем, что в воздухе, находящемся в банке, присутствует водяной пар, образующийся при испарении воды. Появление тумана означает, что пар превратился в воду, т.е. сконденсировался, а это может происходить при понижении температуры. Следовательно, температура воздуха в банке понизилась.

Причина этого следующая. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия — внутренняя энергия воздуха, находящегося в банке.

3.Внутренней энергией тела называют сумму кинетической энергии движения его молекул и потенциальной энергии их взаимодействия.

Кинетической энергией ​\( (E_к) \)​ молекулы обладают, так как они находятся в движении, а потенциальной энергией \( (E_п) \), поскольку они взаимодействуют.

Внутреннюю энергию обозначают буквой ​\( U \)​. Единицей внутренней энергии является 1 джоуль (1 Дж).

\[ U=E_к+E_п \]

4. Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела.

Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию.

Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела.

Внутренняя энергия тела не зависит от его движения как целого и от его взаимодействия с другими телами. Так, внутренняя энергия мяча, лежащего на столе и на полу, одинакова, так же как и мяча, неподвижного и катящегося по полу (если, конечно, пренебречь сопротивлением его движению).

Об изменении внутренней энергии можно судить по значению совершённой работы. Кроме того, поскольку внутренняя энергия тела зависит от его температуры, то по изменению температуры тела можно судить об изменении его внутренней энергии.

5. Внутреннюю энергию можно изменить при совершении работы. Так, в описанном опыте внутренняя энергия воздуха и паров воды в банке уменьшалась при совершении ими работы по выталкиванию пробки. Температура воздуха и паров воды при этом понижалась, о чём свидетельствовало появление тумана.

Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды — повысится. В этом случае работа не совершается, однако внутренняя энергия горячей воды уменьшается, о чем и свидетельствует понижение её температуры.

Поскольку вначале температура горячей воды была выше температуры холодной воды, то и внутренняя энергия горячей воды больше.

А это значит, что молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды.

Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи.

Теплопередачей называется способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.

  • Примеры заданий
  • Ответы

Часть 1

1. Внутренняя энергия газа в запаянном сосуде постоянного объёма определяется

1) хаотическим движением молекул газа 2) движением всего сосуда с газом 3) взаимодействием сосуда с газом и Земли

4) действием на сосуд с газом внешних сил

2. Внутренняя энергия тела зависит от

A) массы тела Б) положения тела относительно поверхности Земли

B) скорости движения тела (при отсутствии трения)

Правильный ответ

1) только А 2) только Б 3) только В

4) только Б и В

3. Внутренняя энергия тела не зависит от

A) температуры тела Б) массы тела

B) положения тела относительно поверхности Земли

Правильный ответ

1) только А 2) только Б 3) только В

4) только А и Б

4. Как изменяется внутренняя энергия тела при его нагревании?

1) увеличивается 2) уменьшается 3) у газов увеличивается, у твёрдых и жидких тел не изменяется

4) у газов не изменяется, у твёрдых и жидких тел увеличивается

5. Внутренняя энергия монеты увеличивается, если её

1) нагреть в горячей воде 2) опустить в воду такой же температуры 3) заставить двигаться с некоторой скоростью

4) поднять над поверхностью Земли

6. Один стакан с водой стоит на столе в комнате, а другой стакан с водой такой же массы и такой же температуры находится на полке, висящей на высоте 80 см относительно стола. Внутренняя энергия стакана с водой на столе равна

1) внутренней энергии воды на полке 2) больше внутренней энергии воды на полке 3) меньше внутренней энергии воды на полке

4) равна нулю

7. После того как горячую деталь опустят в холодную воду, внутренняя энергия

1) и детали, и воды будет увеличиваться 2) и детали, и воды будет уменьшаться 3) детали будет уменьшаться, а воды увеличиваться

4) детали будет увеличиваться, а воды уменьшаться

8. Один стакан с водой стоит на столе в комнате, а другой стакан с водой такой же массы и такой же температуры находится в самолете, летящем со скоростью 800 км/ч. Внутренняя энергия воды в самолёте

1) равна внутренней энергии воды в комнате 2) больше внутренней энергии воды в комнате 3) меньше внутренней энергии воды в комнате

4) равна нулю

9. После того как в чашку, стоящую на столе, налили горячую воду, внутренняя энергия

1) чашки и воды увеличилась 2) чашки и воды уменьшилась 3) чашки уменьшилась, а воды увеличилась

4) чашки увеличилась, а воды уменьшилась

10. Температуру тела можно повысить, если

А. Совершить над ним работу.
Б. Сообщить ему некоторое количество теплоты.

Правильный ответ

1) только А 2) только Б 3) и А, и Б

4) ни А, ни Б

11. Свинцовый шарик охлаждают в холодильнике. Как при этом меняются внутренняя энергия шарика, его масса и плотность вещества шарика? Для каждой физической величины определите соответствующий характер изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА A) внутренняя энергия Б) масса

B) плотность

ХАРАКТЕР ИЗМЕНЕНИЯ 1) увеличивается 2) уменьшается

3) не изменяется

12. В бутыль, плотно закрытую пробкой, закачивают насосом воздух. В какой-то момент пробка вылетает из бутыли. Что при этом происходит с объёмом воздуха, его внутренней энергией и температурой? Для каждой физической величины определите характер её изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА A) объём Б) внутренняя энергия

B) температура

ХАРАКТЕР ИЗМЕНЕНИЯ 1) увеличивается 2) уменьшается

3) не изменяется

Ответы

Источник: //fizi4ka.ru/ogje-2018-po-fizike/vnutrennjaja-jenergija-rabota-i-teploperedacha-kak-sposoby-izmenenija-vnutrennej-jenergii.html

Способы изменения внутренней энергии

Какими способами можно изменить внутреннюю энергию. Способы изменения внутренней энергии тела

Внутреннюю энергию можно изменить двумя способами.

Если работа совершается над телом, его внутренняя энергия увеличивается.

Если работу совершает само тело, его внутренняя энергия уменьшается.

Всего существует три простых (элементарных) вида передачи тепла:

· Теплопроводность

· Конвекция

· Тепловое излучение

Теплопроводность  — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела (атомами, молекулами, электронами  и т. п.)

Конвекция  — явление переноса теплоты в жидкостях или газах, или сыпучих средах потоками вещества. Существует т. н.

естественная конвекция, которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения.

При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется снова и снова.

Тепловое излучение или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн за счёт их тепловой энергии.

Внутренняя энергия идеального газа

Исходя из определения идеального газа, в нем отсутствует потенциальная составляющая внутренней энергии (отсутствуют силы взаимодействия молекул, кроме ударного).

Таким образом, внутренняя энергия идеального газа представляет собой только кинетическую энергию движения его молекул. Ранее (уравнение 2.

10) было показано, что кинетическая энергия поступательного движения молекул газа прямо пропорциональна его абсолютной температуре.

Используя выражение универсальной газовой постоянной (4.6), можно определить величину константы α.

Таким образом, кинетическая энергия поступательного движения одной молекулы идеального газа будет определяться выражением.

В соответствии с кинетической теорией, распределение энергии по степеням свободы равномерное. У поступательного движения 3 степени свободы. Следовательно, на одну степень свободы движения молекулы газа будет приходиться 1/3 ее кинетической энергии.

Для двух, трех и многоатомных молекул газа кроме степеней свободы поступательного движения есть степени свободы вращательного движения молекулы. Для двухатомных молекул газа число степеней свободы вращательного движения равно 2, для трех и многоатомных молекул – 3.

Поскольку распределение энергии движения молекулы по всем степеням свободы равномерное, а число молекул в одном киломоле газа равняется Nμ, внутреннюю энергию одного киломоля идеального газа можно получить, умножив выражение (4.11) на число молекул в одном киломоле и на число степеней свободы движения молекулы данного газа.

где Uμ – внутренняя энергия киломоля газа в Дж/кмоль, i – число степеней свободы движения молекулы газа.

Для 1 – атомного газа i = 3, для 2 – атомного газа i = 5, для 3 – атомного и многоатомного газов i = 6.

Электрический ток. Условия существования электрического тока. ЭДС. Закон Ома для полной цепи. Работа и мощность тока. Закон Джоуля-Ленца

Среди условий, необходимых для существования электрического тока различают: наличие в среде свободных электрических зарядов и создание в среде электрического поля. Электрическое поле в среде необходимо для создания направленного движения свободных зарядов.

Как известно, на заряд q в электрическом поле напряженностью E действует сила F = qE, которая и заставляет свободные заряды двигаться в направлении электрического поля.

Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника.

Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).

Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Условия существования электрического тока:

· наличие свободных носителей зарядов

· наличие разности потенциалов. это условия возникновения тока. чтобы ток существовал

· замкнутая цепь

· источник сторонних сил, который поддерживает разность потенциалов.

Любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил, называют сторонними силами.

Электродвижущая сила

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

Единицей ЭДС, как и напряжения является вольт. Можно говорить об электродвижущей силе на любом участке цепи.

Электродвижущая сила гальванического элемента численно равна работе сторонних сил при перемещении единичного положительного заряда внутри элемента от отрицательного его полюса к положительному.

Знак ЭДС определяется в зависимости от произвольно выбранного направления обхода того участка цепи, на котором включен данный источник тока.

Закон Ома для полной цепи

Рассмотрим простейшую полную цепь, состоящую из источника тока и резистора сопротивлением R. Источник тока имеющий ЭДС ε, обладает сопротивлением r, его называют внутренним сопротивлением источника тока. Для получения закона ома для полной цепи используем закон сохранения энергии.

Пусть за время Δt через поперечное сечение проводника пройдет заряд q. Тогда по формуле , работа сторонних сил при перемещении заряда q равна . Из определения силы тока имеем: q = IΔt. Следовательно, .

Благодаря работе внешних сил при прохождении тока в цепи на ее внешнем и внутреннем участках цепи выделяется количество теплоты, по закону Джоуля-Ленца равное:

Согласно закону сохранения энергии Aст = Q, поэтому  Отсюда  Таким образом, ЭДС источника тока равна сумме падений напряжений на внешнем и внутреннем участках цепи.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: //studopedia.ru/2_103686_sposobi-izmeneniya-vnutrenney-energii.html

Внутренняя энергия тела и способы её изменения

Какими способами можно изменить внутреннюю энергию. Способы изменения внутренней энергии тела

Вы знаете, что существует два вида механической энергии — кинетическая и потенциальная. Давайте вспомним, что кинетической энергией обладает всякое движущееся тело: .

Потенциальная энергия определяется взаимным положением взаимодействующих тел или отдельных частей тела: Eп = mgh.

Изучая механические явления, вы узнали, что кинетическая и потенциальная энергии могут превращаться друг в друга таким образом, что их сумма остаётся постоянной величиной: E = Ek + Eп = const.

В этом заключается один из наиболее общих и фундаментальных законов природы — закон сохранения и превращения энергии.

Однако, вы знаете, что в реальных опытах закономерности превращения энергии выглядят гораздо сложнее.

Например, возьмём гирю из какого-либо мягкого металла, например, из свинца, и стальную плиту. Поднимем гирю вверх на какую-либо высоту, тем самым сообщив ей некоторый запас потенциальной энергии. А затем отпустим.

Во время полёта гири её потенциальная энергия уменьшается, а кинетическая, наоборот, увеличивается. После падения, гиря остановится. Её потенциальная энергия относительно плиты равна нулю, как равна нулю и кинетическая энергия, поскольку гиря неподвижна.

Означает ли это, что нарушился основной закон природы, и энергия бесследно исчезла?

Конечно же нет. Механическая энергия перешла в другой вид энергии. Если внимательно посмотреть на гирю после удара, то мы обнаружим, что она, как и плита, слегка сплющилась, то есть деформировалась. А если мы измерим её температуру до и после падения, то окажется, что она увеличилась.

Мы уже знаем, что при изменении температуры тела, изменяется скорость движения его молекул. Помимо этого, в результате деформации гири, изменилось и взаимное расположение молекул друг относительно друга. Значит изменилась и их потенциальная энергия.

Следовательно, механическая энергия, которой обладала гиря в начале опыта, не исчезла: она перешла в потенциальную и кинетическую энергию её молекул.

Сумма кинетической энергии теплового движения частиц, из которых состоит тело, и потенциальной энергии их взаимодействия, называется внутренней энергией тела.

Обозначают внутреннюю энергию буквой U. А измеряют её в тех же единицах, что и механическую энергию: [U] = [Дж].

Возникает логичный вопрос: а каково значение внутренней энергии какого-либо тела?

Для примера рассмотрим какой-нибудь газ, например, кислород. Потенциальная энергия взаимодействия его молекул между собой практически отсутствует. А кинетическая энергия одной молекулы кислорода очень мала. Расчёты показывают, что среднее значение кинетической энергии молекулы кислорода при комнатной температуре равно 3,7 ∙ 10−21 Дж.

Кто-то скажет, что это очень маленькая величина, и будет прав. Но, например, в 1 м3 газообразного кислорода содержится примерно 2,7 ∙ 1025. А их общая энергия равна почти 100 кДж. А это значение энергии уже весьма значительно. Такой энергией, например, будет обладать одна тонный бизон, если его поднять на высоту десяти метров.

Теперь выясним, от чего зависит внутренняя энергия тела?

Вы уже знаете, что чем больше температура тела, тем быстрее движутся молекулы. Чем больше скорость движения, тем больше их кинетическая энергия. Значит, внутренняя энергия тела зависит от его температуры.

Также вам должно быть известно, что для перевода вещества из жидкого состояния в газообразное, например, чтобы превратить воду в пар, нужно подвести энергию. Следовательно, пар будет обладать большей внутренней энергией, чем вода той же массы. Значит, внутренняя энергия тела при неизменной массе зависит от его агрегатного состояния.

Т. к. масса тела равна сумме масс составляющих его частиц, то внутренняя энергия зависит и от массы тела.

Но внутренняя энергия тела не зависит от его механического движения и от его взаимодействия с другими телами. Так, например, внутренняя энергия мяча, лежащего на полу и поднятого на некоторую высоту от пола, одинакова, так же, как и мяча, неподвижного и катящегося по полу (если, конечно, пренебречь силами сопротивления его движению).

Возникает вопрос, а может ли у тела отсутствовать внутренняя энергия?

Чтобы правильно на него ответить, достаточно вспомнить, что движение частиц, из которых состоит тело, никогда не прекращается, даже при очень низких температурах. Поэтому тело всегда обладает внутренней энергией.

Как правило, значение внутренней энергии в большинстве случаев вычислить очень трудно, поскольку каждое тело состоит из огромного числа частиц. Однако нас чаще будет интересовать не само значение внутренней энергии, а её изменение. А о нём можно судить, в частности, по значению совершённой работы.

Вот мы и подошли ко второй важной проблеме — можно ли как-то изменить внутреннюю энергию тела?

Рассуждаем последовательно. Внутренняя энергия определяется энергией движения и энергией взаимодействия частиц. Следовательно, если мы сможем изменить скорость движения частиц, либо усилить или ослабить их взаимодействие друг с другом, то мы сможем изменить и внутреннюю энергию тела.

Рассмотрим каждую из возможностей изменения внутренней энергии отдельно.

Мы уже знаем, что изменить кинетическую энергию частиц тела можно путём увеличения или уменьшения температуры тела.

Существует два способа это сделать. Рассмотрим их на конкретных примерах. И так, возьмём закрытый сосуд с воздухом, к которому присоединим манометр. И начнём натирать сосуд с помощью тряпочки или сукна.

Уровень жидкости в левом колене манометра начинает понижаться. Это обусловлено тем, что воздух в колбе начинает нагреваться, вследствие чего, увеличивается его давление. Значит увеличивается и кинетическая энергия молекул воздуха. Таким образом, совершив механическую работу (трение сукна о колбу) мы смогли увеличить кинетическую энергию молекул находящегося в колбе воздуха.

Проделаем ещё один опыт. Возьмём толстостенный стеклянный сосуд, на дне которого находится небольшое количество воды. Закроем его пробкой с пропущенной через неё трубкой. Соединим трубку с насосом и начнём накачивать в сосуд воздух. Через некоторое время пробка из сосуда вылетит и в нём образуется туман.

Туман — это превратившийся в воду водяной пар.

Подумайте, когда образуется туман? Наверняка каждый из вас замечал, что чаще всего туман образуется тогда, когда после тёплого дня, наступает прохладная ночь, т. е. при значительном понижении температуры.

Следовательно, температура воздуха в сосуде понизилась. А понизилась она из-за того, что воздух, находящийся в сосуде, совершил работу. Вследствие чего, внутренняя энергия молекул воздуха в сосуде уменьшилась.

Таким образом, мы с вами можем сделать важный вывод о том, что внутренняя энергия тела изменяется при совершении работы. При этом если тело совершает работу, то его внутренняя энергия уменьшается. А если над телом совершают работу, то его внутренняя энергия увеличивается.

Теперь подумаем, можно ли изменить внутреннюю энергию тела, без совершения механической работы?

Вернёмся к опыту с колбой и манометром. Теперь не будем натирать колбу, а нагреем в ней воздух при помощи спиртовки. И опять через небольшой промежуток времени уровень жидкости в левом колене манометра начнёт понижаться. Что свидетельствует о том, что опять происходит изменение внутренней энергии воздуха в колбе.

Теперь обратимся к ситуации, с которой вы сталкиваетесь в жизни постоянно. Возьмём стакан с горячим чаем и металлическую ложку. Вы хорошо знаете, что если ложку опустить в стакан с чаем, то она через некоторое время тоже становится горячей.

В этом случае, как и в предыдущем, работа не совершается, но внутренняя энергия ложки увеличивается, о чём и свидетельствует повышение её температуры.

Поскольку вначале температура воды выше, чем температура ложки, то и средняя скорость молекул воды больше.

А это значит, что молекулы воды обладают большей кинетической энергией, чем частицы металла, из которого сделана ложка.

При столкновении с частицами металла молекулы воды передают им часть своей энергии, и кинетическая энергия частиц металла увеличивается. А кинетическая энергия молекул воды при этом уменьшается.

В рассмотренных нами примерах внутренняя энергия тел изменялась путём теплопередачи.

Теплопередача — способ изменения внутренней энергии тела, при котором энергия передаётся от одной части тела к другой или от одного тела к другому без совершения работы.

Стоит обратить внимание на то, что процесс теплопередачи происходит в определённом направлении — от более нагретых тел к менее нагретым, но не наоборот. А когда температуры тел выравниваются, теплопередача прекращается.

Таким образом, возможны два способа изменения внутренней энергии —совершение механической работы и теплопередача.

Существует три вида теплопередачи — теплопроводность, конвекция и излучение. Но о них мы с вами поговорим на следующих занятиях.

Источник: //videouroki.net/video/02-vnutrennyaya-ehnergiya-tela-i-sposoby-eyo-izmeneniya.html

§ 3. Способы изменения внутренней энергии тела

Какими способами можно изменить внутреннюю энергию. Способы изменения внутренней энергии тела

Глава 1. Тепловые явления

Внутренняя энергия тела не является какой-то постоянной величиной. У одного и того же тела она может изменяться.

При повышении температуры внутренняя энергия тела увеличивается, так как увеличивается средняя скорость движения молекул.

Следовательно, возрастает кинетическая энергия молекул этого тела. С понижением температуры, наоборот, внутренняя энергия тела уменьшается.

Таким образом, внутренняя энергия тела меняется при изменении скорости движения молекул.

Попытаемся выяснить, каким способом можно увеличить или уменьшить скорость движения молекул. Для этого проделаем следующий опыт. Укрепим тонкостенную латунную трубку на подставке (рис. 3). Нальём в трубку немного эфира и закроем пробкой.

Затем трубку обовьём верёвкой и начнём быстро двигать её то в одну сторону, то в другую. Через некоторое время эфир закипит, и пар вытолкнет пробку. Опыт показывает, что внутренняя энергия эфира увеличилась: ведь он нагрелся и даже закипел.

Увеличение внутренней энергии произошло в результате совершения работы при натирании трубки верёвкой.

Нагревание тел происходит также при ударах, разгибании и сгибании, т. е. при деформации. Внутренняя энергия тела во всех приведённых примерах увеличивается.

Следовательно, внутреннюю энергию тела можно увеличить, совершая над телом работу.

Если же работу совершает само тело, то его внутренняя энергия уменьшается.

Проделаем следующий опыт

В толстостенный стеклянный сосуд, закрытый пробкой, накачаем воздух через специальное отверстие в ней (рис. 4).

Через некоторое время пробка выскочит из сосуда. В момент, когда пробка выскакивает из сосуда, образуется туман. Его появление означает, что воздух в сосуде стал холоднее. Находящийся в сосуде сжатый воздух, выталкивая пробку, совершает работу.

Эту работу он совершает за счёт своей внутренней энергии, которая при этом уменьшается. Судить об уменьшении внутренней энергии можно по охлаждению воздуха в сосуде. Итак, внутреннюю энергию тела можно изменить путём совершения работы.

Внутреннюю энергию тела можно изменить и другим способом, без совершения работы. Например, вода в чайнике, поставленном на плиту, закипает.

Воздух и различные предметы в комнате нагреваются от радиатора центрального отопления, крыши домов нагреваются лучами солнца и т. п.

Во всех этих случаях повышается температура тел, а значит, увеличивается их внутренняя энергия. Но при этом работа не совершается.

Значит, изменение внутренней энергии может происходить не только в результате совершения работы.

Как можно объяснить увеличение внутренней энергии в этих случаях?

Рассмотрим следующий пример

Опустим в стакан с горячей водой металлическую спицу. Кинетическая энергия молекул горячей воды больше кинетической энергии частиц холодного металла. Молекулы горячей воды при взаимодействии с частицами холодного металла будут передавать им часть своей кинетической энергии.

В результате этого энергия молекул воды в среднем будет уменьшаться, а энергия частиц металла будет увеличиваться. Температура воды уменьшится, а температура металлической спицы постепенно увеличится. Через некоторое время их температуры выравняются.

Этот опыт демонстрирует изменение внутренней энергии тел.

Итак, внутреннюю энергию тел можно изменить путём теплопередачи.

  • Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплопередачей.

Теплопередача всегда происходит в определённом направлении: от тел с более высокой температурой к телам с более низкой.

Когда температуры тел выравняются, теплопередача прекращается.

Внутреннюю энергию тела можно изменить двумя способами: совершая механическую работу или теплопередачей.

Теплопередача, в свою очередь, может осуществляться: 1) теплопроводностью; 2) конвекцией; 3) излучением.

Вопросы

1. Пользуясь рисунком 3, расскажите, как изменяется внутренняя энергия тела, когда над ним совершают работу. 2. Опишите опыт, показывающий, что за счёт внутренней энергии тело может совершить работу. 3.

Приведите примеры изменения внутренней энергии тела способом теплопередачи. 4. Объясните на основе молекулярного строения вещества нагревание спицы, опущенной в горячую воду. 5. Что такое теплопередача?

6.

Какими двумя способами можно изменить внутреннюю энергию тела?

Упражнение 2

1. Сила трения совершает над телом работу. Меняется ли при этом внутренняя энергия тела? По каким признакам можно судить об этом?

2. При быстром спуске по канату нагреваются руки. Объясните, почему это происходит.

Задание

Положите монету на лист фанеры или деревянную доску. Прижмите монету к доске и двигайте её быстро то в одну, то в другую сторону. Заметьте, сколько раз надо передвинуть монету, чтобы она стала тёплой, горячей. Сделайте вывод о связи между выполненной работой и увеличением внутренней энергии тела.

Источник: //xn--24-6kct3an.xn--p1ai/%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_8_%D0%BA%D0%BB%D0%B0%D1%81%D1%81_%D0%9F%D0%B5%D1%80%D1%8B%D1%88%D0%BA%D0%B8%D0%BD/3.html

WikiMedForum.Ru
Добавить комментарий