Короткий отросток нервной клетки называется. Нервные ткани

Нервная ткань: нейроны и глиальные клетки (глия)

Короткий отросток нервной клетки называется. Нервные ткани

В курсе лекций «Анатомия ЦНС для психологов» я уже писала об анатомической терминологии и нервной системе. В этой статье я решила рассказать о нервной ткани, ее особенностях, видах нервной ткани, классификациях нейронов, нервных волокон, типах глиальных клеток и многом другом.

Хочу напомнить, что все статьи в разделе «Анатомия ЦНС», я пишу именно для психологов, учитывая их программу подготовки. Я по своему опыту помню, как сложно и непривычно было изучать подобные темы во время своей учебы. Поэтому я стараюсь изложить весь материал наиболее понятно.

Для начала, я советую посмотреть небольшое видео, в котором рассказывается о различных тканях человека. Но нас будет интересовать именно нервная ткань. В более красочном и наглядном виде вам будет легче усвоить основы, а потом вы сможете расширить свои знания.

Основной тканью, из которой образована нервная система является нервная ткань, которая состоит из клеток и межклеточного вещества.
Ткань — это совокупность клеток и межклеточного вещества, сходных по строению и выполняемым функциям.

Нервная ткань имеет эктодермальное происхождение. Нервная ткань отличается от других видов ткани тем, что в ней отсутствует межклеточное вещество. Межклеточное вещество является производной глиальной клетки, состоит из волокон и аморфного вещества.

Функцией нервной ткани является обеспечение получения, переработки и хранения информации из внешней и внутренней среды, а также регуляция и координация деятельности всех частей организма.

Нервная ткань состоит из двух видов клеток: нейронов и глиальных клеток. Нейроны играют главную роль, обеспечивая все функции ЦНС. Глиальные клетки имеют вспомогательное значение, выполняя опорную, защитную, трофическую функции и др. В среднем количество глиальных клеток превышает количество нейронов в соотношении 10:1 соответственно.

Каждый нейрон имеет расширенную центральную часть: тело — сому и отростки — дендриты и аксоны. По дендритам импульсы поступают к телу нервной клетки, а по аксонам от тела нервной клетки к другим нейронам или органам.

Отростки могут быть длинными и короткими. Длинные отростки нейронов называются нервными волокнами. Большинство дендритов (дендрон — дерево) короткие, сильно ветвящиеся отростки. Аксон (аксис — отросток) чаще длинный, мало ветвящийся отросток.

Нейроны

Нейрон — это сложно устроенная высокоспециализированная клетка с отростками, способная генерировать, воспринимать, трансформировать и передавать электрические сигналы, а также способная образовывать функциональные контакты и обмениваться информацией с другими клетками.

Каждый нейрон имеет только 1 аксон, длина которого может достигать несколько десятков сантиметров. Иногда от аксона отходят боковые отростки — коллатерали. Окончания аксона, как правило, ветвятся, и их называют терминалями. Место, где от сомы клеток отходит аксон, называется аксональным (аксонным) холмиком.

По отношению к отросткам сома нейрона выполняет трофическую функцию, регулируя обмен веществ. Нейрон обладает признаками, общими для всех клеток: имеет оболочку, ядро и цитоплазму, в которой находятся органеллы (эндоплазматический ретикулум, аппарат Гольджи, митохондрии, лизосомы, рибосомы и т.д.).

Кроме того, в нейроплазме содержатся органеллы специального назначения: микротрубочки и микрофиламенты, которые различаются размером и строением. Микрофиламенты представляют внутренний скелет нейроплазмы и расположены в соме. Микротрубочки тянутся вдоль аксона по внутренним полостям от сомы до окончания аксона. По ним распространяются биологически активные вещества.

Кроме того, отличительной особенностью нейронов является наличие митохондрий в аксоне как добавочного источника энергии. Взрослые нейроны не способны к делению.

Виды нейронов

Существует несколько классификаций нейронов, основанных на разных признаках: по форме сомы, количеству отростков, функциям и эффектам, которые нейрон оказывает на другие клетки.

В зависимости от формы сомы различают:
1. Зернистые (ганглиозные) нейроны, у которых сома имеет округлую форму;
2. Пирамидные нейроны разных размеров — большие и малые пирамиды;
3. Звездчатые нейроны;
4. Веретенообразные нейроны.

По количеству отростков (по строению)выделяют:
1. Униполярные нейроны (одноотростчатые), имеющие один отросток, отходящий от сомы клеток, в нервной системе человека практически не встречаются;
2.

Псевдоуниполярные нейроны (ложноодноотростчатые), такие нейроны имеют Т-образный ветвящийся отросток, это клетки общей чувствительности (боль, изменения температуры и прикосновение);
3. Биполярные нейроны (двухотростчатые), имеющие один дендрит и один аксон (т.е.

2 отростка), это клетки специальной чувствительности (зрение, обоняние, вкус, слух и вестибулярные раздражения);
4. Мультиполярные нейроны (многоотростчатые), которые имеют множество дендритов и один аксон (т.е.

много отростков); мелкие мультиполярные нейроны являются ассоциативными; средние и крупные мультиполярные, пирамидные нейроны — двигательными, эффекторными.

Униполярные клетки (без дендритов) не характерны для взрослых людей и наблюдаются только в процессе эмбриогенеза.

Вместо них в организме человека имеются псевдоуниполярные клетки, у которых единственный аксон разделяется на 2 ветви сразу же после выхода из тела клетки.

Биполярные нейроны имеются в сетчатке глаза и передают возбуждение от фоторецепторов к ганглионарным клеткам, образующим зрительный нерв. Мультиполярные нейроны составляют большинство клеток нервной системы.

По выполняемым функциям нейроны бывают:
1. Афферентные (рецепторные, чувствительные) нейроны — сенсорные (псевдоуниполярные), их сомы расположены вне ЦНС в ганглиях (спинномозговых или черепно-мозговых). По чувствительным нейронам нервные импульсы движутся от периферии к центру.

Форма сомы — зернистая. Афферентные нейроны имеют один дендрит, который подходит к рецепторам (кожи, мышц, сухожилий и т.д.). По дендритам информация о свойствах раздражителей передается на сому нейрона и по аксону в ЦНС.

Пример чувствительных нейронов: нейрон, реагирующий на стимуляцию кожи.

2. Эфферентные (эффекторные, секреторные, двигательные) нейроны регулируют работу эффекторов (мышц, желез и т.д.). Т.е. они могут посылать приказы к мышцам и железам. Это мультиполярные нейроны, их сомы имеют звездчатую или пирамидную форму. Они лежат в спинном или головном мозге или в ганглиях автономной нервной системы.

Короткие, обильно ветвящиеся дендриты воспринимают импульсы от других нейронов, а длинные аксоны выходят за пределы ЦНС и в составе нерва идут к эффекторам (рабочим органам), например, к скелетной мышце.

Пример двигательных нейронов: мотонейрон спинного мозга.

Тела чувствительных нейронов лежат вне спинного мозга, а двигательные нейроны лежат в передних рогах спинного мозга.

3. Вставочные (контактные,интернейроны, ассоциативные, замыкающие) составляют основную массу мозга. Они осуществляют связь между афферентными и эфферентными нейронами, перерабатывают информацию, поступающую от рецепторов в центральную нервную систему.

В основном это мультиполярные нейроны звездчатой формы. Среди вставочных нейронов различают нейроны с длинными и короткими аксонами.

Пример вставочных нейронов: нейрон обонятельной луковицы, пирамидная клетка коры головного мозга.

Цепь нейронов из чувствительного, вставочного и эфферентного получила название рефлекторной дуги. Вся деятельность нервной системы, по определению И.М. Сеченова, носит рефлекторный характер («рефлекс» – обозначает отражение).

По эффекту, который нейроны оказывают на другие клетки:
1. Возбуждающие нейроны оказывают активизирующий эффект, повышая возбудимость клеток, с которыми они связаны.
2. Тормозные нейроны снижают возбудимость клеток, вызывая угнетающий эффект.

Нервные волокна и нервы

Нервные волокна — это покрытые глиальной оболочкой отростки нервных клеток, осуществляющие проведение нервных импульсов. По ним нервные импульсы могут передаваться на большие расстояния (до метра).

Классификация нервных волокон основана на морфологических и функциональных признаках.

По морфологическим признакам различают:
1. Миелинизированные (мякотные) нервные волокна — это нервные волокна, имеющие миелиновую оболочку;
2. Немиелинизированные (безмякотные) нервные волокна — это волокна, не имеющие миелиновой оболочки.

По функциональным признакам различают:
1. Афферентные (чувствительные) нервные волокна;
2. Эфферентные (двигательные)нервные волокна.

Нервные волокна, выходящие за пределы нервной системы, образуют нервы. Нерв — это совокупность нервных волокон. Каждый нерв имеет оболочку и кровоснабжение.

Различают спинномозговые нервы, связанные со спинным мозгом (31 пара), и черепно-мозговые нервы (12 пар), связанные с головным мозгом. В зависимости от количественного соотношения афферентных и эфферентных волокон в составе одного нерва различают чувствительные, двигательные и смешанные нервы (см. таблицу ниже).

В чувствительных нервах преобладают афферентные волокна, в двигательных — эфферентные, в смешанных — количественное соотношение афферентных и эфферентных волокон приблизительно равно. Все спинномозговые нервы являются смешанными нервами. Среди черепно-мозговых нервов выделяют три вышеперечисленных типа нервов.

Список черепно-мозговых нервов с обозначением доминирующих волокон:

I пара — обонятельные нервы (чувствительные); II пара — зрительные нервы (чувствительные); III пара — глазодвигательные (двигательные); IV пара — блоковые нервы (двигательные); V пара — тройничные нервы (смешанные); VI пара — отводящие нервы (двигательные); VII пара — лицевые нервы (смешанные); VIII пара —  вестибуло-кохлеарные нервы (чувствительные); IX пара — языкоглоточные нервы (смешанные); X пара — блуждающие нервы (чувствительные); XI пара — добавочные нервы (двигательные);XII пара — подъязычные нервы (двигательные).

Глия

Пространство между нейронами заполнено клетками, которые называются нейроглией (глией). По подсчетам глиальных клеток примерно в 5-10 раз больше, чем нейронов.

В отличие от нейронов клетки нейроглии делятся в течение всей жизни человека.

Клетки нейроглии выполняют многообразные функции: опорную, трофическую, защитную, изолирующую, секреторную, участвуют в хранении информации, то есть памяти.

Выделяют два типа глиальных клеток:
1. клетки макроглии или глиоциты (астроциты, олигодендроциты, эпендимоциты);
2. клетки микроглии.

Астроциты имеют звездчатую форму и много отростков, которые отходят от тела клетки в разных направлениях, некоторые из них оканчиваются на кровеносных сосудах. Астроциты служат опорой для нейронов, обеспечивая их репарацию (восстановление) после повреждения, и участвуют в их метаболических процессах (обмене веществ).

Считается, что астроциты очищают внеклеточные пространства от избытка медиаторов и ионов, способствуя устранению химических «помех» для взаимодействий, происходящих на поверхности нейронов. Астроциты играют важную роль в объединении элементов нервной системы.

Таким образом, можно выделить такие функции астроцитов: 1. восстановление нейронов, участие в регенерационных процессах ЦНС; 2. удаление избытка медиаторов и ионов; 3.

участие в формировании и поддержании гематоэнцефалического барьера (ГЭБ), т.е. барьера между кровью и тканью мозга; обеспечивается поступление питательных веществ из крови к нейронам; 4.

создание пространственной сети, опоры для нейронов («клеточный скелет»); 5. изоляция нервных волокон и окончаний друг от друга;

6. участие в метаболизме нервной ткани — поддержание активности нейронов и синапсов.

Источник: https://impsi.ru/anatomy-of-the-cns/nervnaya-tkan-nejrony-i-glialnye-kletki-gliya/

Нервная система – биология

Короткий отросток нервной клетки называется. Нервные ткани

Белое вещество спинного мозга обеспечивает связь и согласованную работу всех отделов центральной нервной системы, осуществляя проводниковую функцию. Все рефлексы спинного мозга находятся под контролем головного мозга.

Головной мозг является главным регулятором всех функций организма, обеспечивает высшую нервную деятельность человека.

Головной мозг расположен в мозговой части черепа. Масса головного мозга взрослого человека составляет около 1400—1500 г.

Головной мозг состоит из пяти отделов:

  • продолговатый мозг,
  • средний мозг (иногда в среднем мозге выделяют еще один отдел — мост или варолиев мост),
  • мозжечок,
  • промежуточный мозг,
  • большие полушария мозга.

Самую древнюю часть головного мозга ствол мозга, который составляют: продолговатый мозг, мост, средний мозг и промежуточный мозг. Отсюда выходят 12 пар черепно-мозговых нервов, которые соединяют мозг человека с органами чувств, мышцами и железами, расположенными в основном в области головы.

Продолговатый мозг является продолжением спинного мозга. Он выполняет рефлекторную и проводниковую функцию.

В продолговатом мозге находятся следующие центры:

  • дыхательный;
  • сердечной деятельности;
  • сосудодвигательный;
  • безусловных пищевых рефлексов;
  • защитных рефлексов (кашля, чихания, мигания, слезоотделения);
  • центры изменения тонуса некоторых групп мышц и положения тела.

Задний мозг состоит из варолиева моста и мозжечка.

Мозжечок играет основную роль в поддержании равновесия тела и координации движений.

Его основные функции:

  • регуляция позы тела и поддержание мышечного тонуса;
  • координация медленных произвольных движений с позой всего тела (ходьба, плавание);
  • обеспечение точности быстрых произвольных движений (письмо).

При поражении мозжечка его обладатель не может стоять с закрытыми глазами, конечности дрожат, точность движений нарушена, речь делается невнятной.

В среднем мозге находятся ядра, регулирующие напряжение мышц или мышечный тонус. Идущие от ядер импульсы обеспечивают соотношение тонуса мышц сгибателей и разгибателей. Через средний мозг проходят рефлекторные дуги ориентировочных рефлексов на зрительные и звуковые раздражения. Они проявляются в поворотах головы и тела в сторону световых или звуковых раздражителей.

Промежуточный мозг включает: зрительные бугры (таламус), надбугорную область (эпиталамус), подбугорную область (гипоталамус) и коленчатые тела.

Таламус отвечает за все виды чувствительности (кроме обонятельной) и координирует мимику, жестикуляцию, другие проявления эмоций. Через таламус проходят к коре больших полушарий нервные импульсы от всех органов чувств (зрения, слуха, вкуса и др.).

Большая часть сложных движений, таких, как ходьба, бег, плавание, связана с промежуточным мозгом. Сверху к таламусу прилегает эпифиз — железа внутренней секреции. Ядра эпифиза участвуют в работе обонятельного анализатора.

Снизу находится другая железа внутренней секреции — гипофиз .

Гипоталамус контролирует деятельность вегетативной нервной системы, участвует в поддержании на оптимальном уровне обмена веществ и энергии, в терморегуляции, в регуляции деятельности пищеварительной, сердечно сосудистой, дыхательной и эндокринной систем. Под его контролем находятся такие железы внутренней секреции как гипофиз, щитовидная железа, половые железы, поджелудочная железа, надпочечники.

В промежуточном мозге находятся подкорковые центры зрения и слуха.

Если до уровня среднего мозга головной мозг является единым стволом, то, начиная со среднего мозга, происходит его разделение на две симметричные половины.

Передний мозг состоит из правого и левого полушарий, соединенных мозолистым телом. Серое вещество образует кору головного мозга.

 Кора головного мозга — это тонкий слой серого вещества (тел нейронов), толщиной всего несколько миллиметров, покрывающий весь передний мозг. Белое вещество образует проводящие пути полушарий.

В белом веществе рассеяны ядра серого вещества (подкорковые структуры).

Если до уровня среднего мозга головной мозг является единым стволом, то, начиная со среднего мозга, происходит его разделение на две симметричные половины.

Передний мозг состоит из двух полушарий (правого и левого), соединённых мозолистым телом. Нижняя поверхность полушарий называется основанием мозга.

Развитые большие полушария мозга у человека покрывают весь средний и промежуточный мозг.

Такие психические функции, как память, речь, мышление, творческие процессы, личностные качества связаны именно с большими полушариями мозга. Функции левого и правого полушарий неравнозначны. Правое полушарие отвечает за образное мышление, левое — за абстрактное. При повреждениях левого полушария нарушается речь человека.

Серое вещество образует кору головного мозга.

Белое вещество образует проводящие пути полушарий. В белом веществе рассеяны ядра серого вещества (подкорковые структуры).
Деятельность всех органов человека контролируется корой больших полушарий.

 Кора больших полушарий головного мозга — это тонкий слой серого вещества (тел нейронов), толщиной всего несколько миллиметров, покрывающий весь передний мозг. Площадь поверхности коры составляет около 2000—2500 см² (это связано с наличием большого количества борозд и извилин).

Кора обеспечивает связь организма с внешней средой, является материальной основой психической деятельности человека.

https://www.youtube.com/watch?v=Ew8vOSXIveI

Глубокие борозды делят каждое полушарие на 4 доли: лобную, теменную, височную и затылочную. Между бороздами расположены складки коры полушарий — извилины.

Наибольшего развития у человека достигают лобные доли, отделённые от теменных долей глубокой центральной бороздой. Их масса составляет около 50% массы головного мозга.

В лобные доли приходит информация обо всех ощущениях.

Здесь происходит её суммарный анализ и создаётся целостное представление об образе. Поэтому эту зону коры называют ассоциативной, именно с ней связана способность к обучению.

Если лобная кора разрушена, то не возникает ассоциаций между видом предмета и его названием, между изображением буквы и звуком, который она обозначает. Обучение становится невозможным.

В височных долях расположены слуховые центры, а также центры вкуса и обоняния.

В затылочной доле расположены зрительные центры.

В коре больших полушарий различают следующие чувствительные и двигательные зоны:– двигательная зона расположена в передней центральной извилине лобной доли;– зона кожно-мышечной чувствительности расположена в задней центральной извилине теменной доли;– зрительная зона расположена в затылочной доле;– слуховая зона расположена в височной доле;

– центры обоняния и вкуса находятся на внутренних поверхностях височных и лобных долей.

Основной принцип работы нервной системы — рефлекторный. 

Рефлекс – это ответная реакция организма на раздражение, происходящая при участии нервной системы.

Нервный импульс, возникший при раздражении, проходит определённый путь, называемый рефлекторной дугой.

Рефлекторная дуга — нейронный путь, по которому проводятся нервные импульсы при осуществлении рефлекса.

В состав рефлекторной дуги входит пять частей:

  • рецептор – нервное окончание, воспринимающее раздражение (Рецепторы находятся в органах, мышцах, коже и т.д. Каждый вид рецепторов реагирует на определенный раздражитель: свет, звук, прикосновение, запах, температуру и др. Рецепторы преобразуют эти раздражители в нервные импульсы – сигналы нервной системы).
  • чувствительный путь, передающий импульс в ЦНС (Эта часть рефлекторной дуги образована чувствительными нейронами).
  • участок центральной нервной системы (вставочный нейрон, лежащий в головном или спинном мозге),
  • двигательный путь (исполнительный или двигательный нейрон, передающий импульс к исполнительному органу или железе).
  • рабочий орган

Рефлексы человека разнообразны.

Пример:

Отдергивание руки в ответ на укол или ожог кожи, обильное выделение слез под действием веществ, раздражающих глаза, чиханье при попадании посторонних частиц в носовую полость.

Соматические рефлекторные дуги осуществляют двигательные рефлексы.

Вегетативные рефлекторные дуги координируют работу внутренних органов.

Рефлекторная реакция заключается не только в возбуждении, но и в торможении, т.е. в задержке, ослаблении или полном прекращении возникшего возбуждения.

Взаимосвязь возбуждения и торможения обеспечивают согласованную работу организма.

Источник: https://www.sites.google.com/site/biologia2017kgy/nervnaa-sistema

Нервные ткани

Короткий отросток нервной клетки называется. Нервные ткани

Группа нервных тканей объединяет ткани эктодермального происхождения, которые в совокупности образуют нервную систему и создают условия для реализации ее многочисленных функций. Обладают двумя основными свойствами: возбудимостью и проводимостью.

Нейрон

Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον — волокно, нерв) – клетка с одним длинным отростком – аксоном, и одним/несколькими короткими – дендритами.

Спешу сообщить, что представление, будто короткий отросток нейрона – дендрит, а длинный – аксон, в корне неверно. С точки зрения физиологии правильнее дать следующие определения: дендрит – отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон – отросток нейрона, по которому импульс перемещается от тела нейрона.

Отростки нейронов проводят сгенерированные нервные импульсы и передают их другим нейронам, эффекторам (мышцы, железы), благодаря чему мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.

Миелиновая оболочка

Отростки нейронов покрыты жироподобным веществом – миелиновой оболочкой, которая обеспечивает изолированное проведение нервного импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и, когда мы хотели сделать движение рукой, двигалась бы нога.

Существует болезнь, при которой собственные антитела уничтожают миелиновую оболочку (случаются и такие сбои в работе организма.) Эта болезнь – рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов – а значит, происходит атрофия мышц и человек постепенно становится обездвиженным.

Нейроглия

Вы уже убедились, насколько значимы нейроны, их высокая специализация приводит к возникновению особого окружения – нейроглии.

Нейроглия – вспомогательная часть нервной системы, которая выполняет ряд важных функций:

  • Опорная – поддерживает нейроны в определенном положении
  • Изолирующая – ограничивает нейроны от соприкосновения с внутренней средой организма
  • Регенераторная – в случае повреждения нервных структур нейроглия способствует регенерации
  • Трофическая – с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют

В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной системы миелиновая оболочка, изученная нами, образуется именно из нейроглии – шванновских клеток. Между ними хорошо заметны перехваты Ранвье – участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.

Классификация нейронов

Нейроны функционально подразделяются на чувствительные, двигательные и вставочные.

Чувствительные нейроны также называются афферентные, центростремительные, сенсорные, воспринимающие – они передают возбуждение (нервный импульс) от рецепторов в ЦНС. Рецептором называют концевое окончание чувствительных нервных волокон, воспринимающих раздражитель.

Вставочные нейроны также называются промежуточные, ассоциативные – они обеспечивают связь между чувствительными и двигательными нейронами, передают возбуждение в различные отделы ЦНС.

Двигательные нейроны по-другому называются эфферентные, центробежные, мотонейроны – они передают нервный импульс (возбуждение) из ЦНС на эффектор (рабочий орган). Наиболее простой пример взаимодействия нейронов – коленный рефлекс (однако вставочного нейрона на данной схеме нет). Более подробно рефлекторные дуги и их виды мы изучим в разделе, посвященном нервной системе.

Синапс

На схеме выше вы наверняка заметили новый термин – синапс. Синапсом называют место контакта между двумя нейронами или между нейроном и эффектором (органом-мишенью). В синапсе нервный импульс “преобразуется” в химический: происходит выброс особых веществ – нейромедиаторов (наиболее известный – ацетилхолин) в синаптическую щель.

Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula — пузырек) с нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.

Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение передается другому нейрону, и он генерирует нервный импульс. Так устроена нервная система: электрический путь передачи сменяется химическим (в синапсе).

Яд кураре

Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими 😉 Не могу утаить историю о яде кураре, который используют индейцы для охоты с древних времен.

Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к мышцам организма, в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.

Нервы и нервные узлы

Собираясь вместе, аксоны образуют нервные пучки. Нервные пучки объединяются в нервы, покрытые соединительнотканной оболочкой. В случае, если тела нервных клеток концентрируются в одном месте за пределами центральной нервной системы, их скопления называют нервные узлы – или ганглии (от др.-греч. γάγγλιον — узел).

В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных – плечевое сплетение.

Болезни нервной системы

Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом движения сохранены в полном объеме.

Если повреждено двигательное звено, движение в пораженной конечности будет невозможно: возникает паралич, но чувствительность может сохраняться.

Существует тяжелое мышечное заболеванием – миастения (от др.-греч. μῦς — «мышца» и ἀσθένεια — «бессилие, слабость»), при котором собственные антитела разрушают мотонейроны.

Постепенно любые движения мышцами становятся для пациента все труднее, становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом – опущение верхнего века. Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.

Источник: https://studarium.ru/article/80

Строение нервной ткани. Ее функции и свойства

Короткий отросток нервной клетки называется. Нервные ткани

Нервная ткань – совокупность связанных между собой нервных клеток (нейронов, нейроцитов) и вспомогательных элементов (нейроглии), которая регулирует деятельность всех органов и систем живых организмов. Это основной элемент нервной системы, которая делится на центральную (включает головной и спинной мозг) и периферическую (состоящую из нервных узлов, стволов, окончаний).

Основные функции нервной ткани

  1. Восприятие раздражения;
  2. формирование нервного импульса;
  3. быстрая доставка возбуждения к центральной нервной системе;
  4. хранение информации;
  5. выработка медиаторов (биологически активных веществ);
  6. адаптация организма к переменам внешней среды.

Свойства нервной ткани

  • Регенерация — происходит очень медленно и возможна только при наличии неповрежденного перикариона. Восстановление утраченных отростков идет путем прорастания.
  • Торможение — предотвращает возникновение возбуждения или ослабляет его
  • Раздражимость — ответ на влияние внешней среды благодаря наличию рецепторов.
  • Возбудимость — генерирование импульса при достижении порогового значения раздражения. Существует нижний порог возбудимости, при котором самое маленькое влияние на клетку вызывает возбуждение. Верхний порог – это величина внешнего воздействия, которая вызывает боль.

Строение и морфологическая характеристика нервных тканей

Строение нейрона

Основная структурная единица – это нейрон. Он имеет тело – перикарион (в котором находятся ядро, органеллы и цитоплазма) и несколько отростков.

Именно отростки являются отличительной чертой клеток этой ткани и служат для переноса возбуждения. Длина их колеблется от микрометров до 1,5м.

Тела нейронов также различных размеров: от 5 мкм в мозжечке, до 120 мкм в коре головного мозга.

До недавнего времени считалось, что нейроциты не способны к делению. Сейчас известно, что образование новых нейронов возможно, правда только в двух местах – это субвентрикулякная зона мозга и гиппокамп.

Продолжительность жизни нейронов ровна длительности жизни отдельного индивидуума.

Каждый человек при рождении имеет около триллиона нейроцитов и в процессе жизнедеятельности теряет каждый год 10млн клеток.

Отростки делятся на два типа – это дендриты и аксоны.

Строение аксона. Начинается он от тела нейрона аксонным холмиком, на всем протяжении не разветвляется и только в конце разделяется на ветки. Аксон – это длинный отросток нейроцита, который выполняет передачу возбуждения от перикариона.

Строение дендрита. У основания тела клетки он имеет конусообразное расширение, а дальше разделяется на множество веточек (этим обусловлено его название, «дендрон» с древнегреческого – дерево). Дендрит – это короткий отросток и необходим для трансляции импульса к соме.

По количеству отростков нейроциты делятся на:

  • униполярные (есть только один отросток, аксон);
  • биполярные (присутствует и аксон, и дендрит);
  • псевдоуниполярные (от некоторых клеток в начале отходит один отросток, но затем он делится на два и по сути является биполярным);
  • мультиполярные (имеют множество дендритов, и среди них будет лишь один аксон).

Мультиполярные нейроны превалируют в организме человека, биполярные встречаются только в сетчатке глаза, в спинномозговых узлах – псевдоуниполярные. Монополярные нейроны вовсе не встречаются в организме человека, они характерны только для малодифференцированной нервной ткани.

Химический состав нервной ткани

Вода содержится в значительном количестве в коре головного мозга, меньше ее в белом веществе и нервных волокнах.

Белковые вещества представлены глобулинами, альбуминами, нейроглобулинами. В белом веществе мозга и аксонных отростках встречается нейрокератин. Множество белков в нервной системе принадлежит медиаторам: амилаза, мальтаза, фосфатаза и др.

В химический состав нервной ткани входят также углеводы – это глюкоза, пентоза, гликоген.

Среди жиров обнаружены фосфолипиды, холестерол, цереброзиды (известно, что цереброзидов нет у новорожденных, их количество постепенно вырастает во время развития).

Микроэлементы во всех структурах нервной ткани распределены равномерно: Mg, K, Cu, Fe, Na. Их значение очень велико для нормального функционирования живого организма. Так магний участвует в регуляции работы нервной ткани, фосфор важен для продуктивной умственной деятельности, калий обеспечивает передачу нервных импульсов.

Оцените, пожалуйста, статью. Мы старались:) (32 4,59 из 5)
Загрузка…

Источник: https://animals-world.ru/nervnaya-tkan/

Отростки нейронов: определение, строение, виды и функции

Короткий отросток нервной клетки называется. Нервные ткани

Величайшее достижение эволюции – головной мозг и развитая нервная система организмов, со все усложняющейся информационной сетью, основанной на химических реакциях.

Нервный импульс, бегущий по отросткам нейронов, – квинтэссенция сложной деятельности человека. В них возникает импульс, по ним он движется и именно нейроны их анализируют.

Отростки нейрона – главная функциональная часть этих специфических клеток нервной системы, о них и пойдет речь.

Происхождение нейронов

Вопрос происхождения специализированных клеток открыт и сегодня. Есть по меньшей мере три теории на этот счет – Клейненберга (Kleinenberg, 1872), братьев Гертвиг (Hertwig, 1878) и Заварзина (Заварзин, 1950).

Все они сводятся к тому, что нейроны возникли из первичных чувствительных эктодермальных клеток, а их предшественниками были глобулярные белки, объединившиеся в пучки.

Белки, впоследствии получившие клеточную мембрану, оказались способными к восприятию раздражения, генерации и проведению возбуждения.

Современные представления о структуре нейрона и отростков

Специализированная клетка нервной ткани состоит из:

  • Сомы или тела нейрона, в котором находятся органеллы, нейрофибриллы и ядро.
  • Множества коротких отростков нейрона, которые называются дендритами. Их функция – восприятие возбуждения.
  • Одного длинного отростка нейрона – аксона, покрытого как «муфтой» миелиновой оболочкой. функция аксона – проведение возбуждения.

Все структуры нейрона имеют различное строение мембран и все они абсолютно разные. Среди множества нейронов (в нашем мозге их примерно 25 миллиардов) нет абсолютных двойников как по внешним признакам, так и по строению и, что самое главное, по специфике функционирования.

Тело нейрона имеет множество коротких и разветвленных отростков, которые называют дендритное дерево или дендритный регион. Все дендриты имеют множество ответвлений и точек соприкосновения с другими нейронами. Эта сеть восприятия повышает уровень сбора информации из окружающей нейрон среды. Все дендриты обладают следующими особенностями:

  • Они относительно короткие – до 1 миллиметра.
  • У них нет миелиновой оболочки.
  • Эти отростки нейрона характеризуются наличием рибонуклеотидов, эндоплазматического ретикулума и разветвленной сети микротрубочек, обладающей своей уникальностью.
  • Имеют специфические отростки – шипики.

Шипики дендритов

Эти выросты мембраны дендритов могут находиться на всей их поверхности в многочисленном количестве. Это дополнительные точки контакта (синапсы) нейрона, во много раз увеличивающие площадь межнейрональных контактов.

Кроме расширения воспринимающей поверхности, они играют важную роль в ситуации внезапных экстремальных воздействий (например, при отравлениях или ишемии).

Количество их в таких случаях резко меняется в сторону увеличения либо уменьшения и стимулирует организм увеличивать или уменьшать скорость и количество процессов метаболизма.

Длинный отросток нейрона называется аксон (ἀξον – ось, греч.), его называют еще осевым цилиндром. В месте образования аксона на теле нейрона имеется холмик, играющий важную роль в формировании нервного импульса. Именно тут суммируется потенциал действия, поступивший от всех дендритов нейрона. В структуре аксона есть микротрубочки, но почти нет органелл.

Питание и рост этого отростка полностью зависит от тела нейронов. При повреждениях аксона их периферическая часть погибает, а тело и оставшаяся часть остаются жизнеспособными. И иногда нейрон может отрастить новый аксон. Диаметр аксона всего несколько микрометров, а вот длина может достигать 1 метра.

Таковы, например, аксоны нейронов спинного мозга, которые иннервируют конечности человека.

Миелинизация аксона

Оболочка длинных отростков нейрона образована клетками Шванна. Эти клетки обхватывают участки аксона, а их язычок обворачивается вокруг него. Цитоплазма клеток Шванна почти полностью утрачивается и остается только мембрана из липопротеидов (миелина).

Предназначение миелиновой оболочки длинных отростков тел нейрона – обеспечение электрической изоляции, что приводит к увеличению скорости нервного импульса (с 2 м/сек до 120 м/сек.). Оболочка имеет разрывы – перетяжки Ранвье.

В этих местах импульс, как ток гальванического характера, свободно выходит в среду и входит обратно. И именно в перетяжках Ранвье происходит возникновение потенциала действия. Таким образом, импульс движется по аксону скачками – от перетяжки к перетяжке.

Миелин белого цвета, именно это послужило критерием для деления нервного вещества на серое (тела нейронов) и белое (проводящие пути).

Кустики аксона

В своем окончании, аксон многократно разветвляется и формирует кустик. На окончании каждой веточки находится синапс – место контакта аксона с другим аксоном, дендритом, телом нейронов или соматическими клетками. Такое многократное разветвление позволяет достичь множественной иннервации и дублирования передачи импульса.

Синапс – место передачи нервного импульса

Синапсы – уникальные образования нейронов, где сигнал передается посредством веществ, называемых медиаторами. Потенциал действия (нервный импульс) достигает окончания отростка – аксонного утолщения, которое называется пресинаптической областью.

Здесь находятся множественные пузырьки с медиаторами (везикулы). Нейромедиаторы – биологически активные молекулы, предназначенные для передачи нервного импульса (например, ацетилхолин в мышечных синапсах).

Когда трансмембранный ток в виде потенциала действия доходит до синапса, он стимулирует работу мембранных насосов, и в клетку поступают ионы кальция. Они инициируют разрыв везикул, медиатор поступает в синаптическую щель и связывается с рецепторами постсинаптической мембраны преемника импульса.

Это взаимодействие запускает работу натрий-калиевых насосов мембраны, и возникает новый потенциал действия, идентичный предыдущему.

Аксон и клетка-мишень

В процессе эмбриогенеза и постэмбриогенеза организма нейроны отращивают аксоны к тем клеткам, которые должны ими иннервироваться. И рост этот строго направлен. Механизмы роста нейронов открыты не так давно, и их часто сравнивают с хозяином, ведущим на поводке собачку.

В нашем случае хозяин – тело нейрона, поводок – аксон, а собачка – точка роста аксона с псевдоподиями (ложноножками). Ориентировка и выбор направления роста аксона зависит от множества факторов. Механизм этот сложен и во многом еще не до конца изучен.

Но факт остается фактом – аксон достигает именно своей клетки-мишени, а отростки двигательного нейрона, который отвечает за мизинец, отрастут именно в мышцы мизинца.

Законы работы аксона

При проведении нервного импульса по аксонам работает четыре главных закона:

  • Закон анатомо-физиологической целостности. Проведение возможно только по неповрежденным отросткам нейронов. К этому правилу относится и повреждения в результате изменения проницаемости мембран (под действием наркотиков или ядов).
  • Закон изоляции возбуждения. Один аксон – проведение одного возбуждения. Аксоны не делятся друг с другом нервными импульсами.
  • Закон одностороннего проведения. Аксон проводит импульс либо центробежно, либо центростремительно.
  • Закон отсутствия потерь. Это свойство бездекрементности – при проведении импульса он не затихает и не меняется.

Разновидности нейронов

Нейроны звездчатые, пирамидальные, зернистые, корзинчатые – такими они могут быть по форме тела. По количеству отростков нейроны бывают: биполярные (по одному дендриту и аксону) и мультиполярные (один аксон и множество дендритов).

По функционалу нейроны сенсорные, вставные и исполнительные (моторные и двигательные). Выделяют нейроны типа Гольджи 1 и типа Гольджи 2. Эта классификация основана на длине отростка нейрона аксона. Первый тип – это когда аксон выходит далеко за область расположения тела (пирамидные нейроны коры больших полушарий).

Второй тип – аксон находится в той же зоне, что и тело (нейроны мозжечка).

Источник: https://FB.ru/article/345053/otrostki-neyronov-opredelenie-stroenie-vidyi-i-funktsii

WikiMedForum.Ru
Добавить комментарий