Научиться быстро складывать в уме. Суть ментальной методики. Трюк с угадыванием цифры

5 простых математических фокусов

Научиться быстро складывать в уме. Суть ментальной методики. Трюк с угадыванием цифры

Привить любовь к математике можно разными способами, и самый необычный из них — через фокусы.

Для некоторых детей этот способ может стать самым действенным — появится реальный стимул тренироваться в устном счёте и разбираться в формулах. Сайт «Фокусы.

Как научиться» собрал пять самых интересных математических фокусов, а «Мел» попросил учителя математики Дмитрия Коробченко объяснить, как они работают.

Рассылка «Мела»

Мы отправляем нашу интересную и очень полезную рассылку два раза в неделю: во вторник и пятницу

Математические фокусы — самые простые в исполнении. Для них не нужен реквизит, длительная подготовка и специальное место для демонстрации. Смысл таких фокусов — в отгадывании чисел, задуманных зрителями, или в каких-нибудь операциях над ними. Все чудеса основаны на математических закономерностях, такие фокусы можно проделывать на уроках алгебры и геометрии.

И хотя вместо цифр, геометрических фигур в некоторых фокусах мы будем использовать различные предметы, все они связаны с числами. Вначале попробуйте проделать самые простые фокусы.

Только помните: эти фокусы с цифрами будут получаться только тогда, когда вы научитесь быстро считать в уме (а вот, кстати, несколько советов, как этому научиться).

Поэтому начинать советуем с тренировки в устном счёте, причём от меньших цифр к большим.

Дмитрий Коробченко,

учитель математики:

Обобщить секрет всех подобных математических фокусов можно следующим образом: зритель загадывает некое случайное число (или числа).

Затем мы предлагаем зрителю произвести с этим числом некоторые простые арифметические операции.

В итоге у зрителя получается некий финальный результат («ответ»), и наша задача — либо (1) угадать этот результат, либо (2) по этому результату, который зритель нам сообщает, предсказать исходное загаданное число.

1. Угадай число

фокуса. Попросите любого зрителя задумать число. Потом это число зритель должен умножить на 2, прибавить к результату 8, разделить результат на 2 и задуманное число отнять. В результате вы смело называете число 4.

Пример. Зритель задумал число 7.

Дмитрий Коробченко:

Фокус относится к случаю (1). Загадано число X. Зритель выполняет следующие операции:

Мы получили 4 независимо от изначально загаданного числа.

Ответ: 4

2. Угаданный день рождения

фокуса. Объявите зрителям, что вы сможете угадать день рождения любого незнакомого человека, сидящего в зале. Вызовите любого желающего и предложите ему умножить на 2 число дня своего рождения.

Затем пусть зритель сложит получившееся произведение и число 5 и умножит на 50 полученную сумму. К этому результату необходимо прибавить номер месяца рождения (июль — 7, январь — 1), вслух назвать полученное число.

Через секунду вы называете день и месяц рождения зрителя.

Секрет. Все очень просто. В уме от того числа, которое назвал зритель, отнимите 250. У вас должно выйти трехзначное или четырехзначное число. Первая и вторая цифры — день рождения, две последние — месяц.

Дмитрий Коробченко:

Фокус относится к случаю (2). Загадан день рождения. День — X, месяц — Y. Оба числа являются не более чем двузначными. Зритель выполняет следующие операции:

В уме отнимаем 250:

Так как Y — не более чем двузначное число, в получившемся числе [W=X*100+Y] месяц Y и день X никак не перемешаются. Поэтому последние две цифры числа W — это месяц Y, остальные — день X.

Пример:

Ответ: X, Y

3. Разгаданный результат математических вычислений

Вам понадобятся: заранее приготовленные листы бумаги, карандаши или ручки, калькуляторы.

фокуса. Предложите зрителям задумать трехзначное число и записать его на бумаге.

При загадывании числа должно быть выполнено одно условие: цифра сотен не должна быть равна цифре единиц и не должна быть на единицу меньше или больше неё.

Если вы ещё путаетесь в сотнях и единицах, то на первом месте в трехзначных числах стоят сотни, на втором десятки, на третьем единицы (например, подойдёт число 531).

Пример. Допустим, это и есть число 531. Теперь зрители должны перевернуть задуманное число, то есть написать цифры в обратном порядке (135). Затем зрители должны взять эти два числа и из большего вычесть меньшее (531 — 135). Получившуюся разницу снова нужно перевернуть (396; 693) и сложить эти два числа (396 + 693).

Потом один из зрителей должен прибавить к полученной сумме 100, второй — 200, третий — 300 и так далее. Теперь вы можете отгадать, что получилось у каждого зрителя, но при том условии, что они к своему последнему числу прибавят цифру 1 089.

У первого зрителя, прибавлявшего 100, получится 1 189, у второго — 1 289, у третьего — 1 389.

Секрет фокуса. Для того чтобы узнать, что получилось, вам не нужно знать задуманное число. Главное — прибавлять к числу 1 089 то число (100, 200, 300, 400…), которое прибавлялось в самом конце. Для того чтобы не перепутать, у кого что получилось, в самом конце фокуса можно раздать карточки с цифрами 100, 200, 300 и попросить держать их при отгадывании конечного результата.

Дмитрий Коробченко:

Примечание: Порой в фокусах встречаются различные операции над цифрами, которые входят в состав используемых чисел. В таком случае полезно пользоваться тем фактом, что число с цифрами a, b,c, записанное как «abc», представимо в виде:

Например:

Фокус относится к случаю (1). Загадано трёхзначное число, X, записанное как «abc». Цифра сотен — a. Цифра десятков — b. Цифра единиц — c. То есть:

По условию:

Зритель выполняет следующие операции. Перевернуть число:

Вычесть из большего числа меньшее (допустим, a > c, в противном случае всё будет так же, просто a и c поменяются ролями):

Для дальнейшего действия нам необходимо представить число («abc» — «cba») как «def», то есть найти его сотни, десятки и единицы.

Все такие двузначные числа можно найти в таблице умножения (18, 27, 36, 45, 54, 63, 72, 81), и они обладают следующим свойством: сумма цифр такого числа равна 9. Запишем 9*t как «df»:

Вернёмся к числу «abc» — «cba»:

Дальнейшее действие — получившееся число снова перевернуть и сложить с предыдущим:

В результате мы получили число 1089 независимо от изначально загаданного числа. Далее к этому числу мы просим прибавить 100, 200 или 300 и получаем соответственно 1189, 1289 или 1389.

Ответ: 1189, 1289 или 1389 (в зависимости от зрителя).

4. Угадываем задуманное число

Вам понадобятся: заранее приготовленные листы бумаги (по числу зрителей), карандаши или ручки, калькуляторы.

фокуса. Предложите зрителям задумать двузначное число.

Теперь пусть они умножат число его десятков на 2, прибавят к этому произведению число 5, умножат эту сумму на 5, к полученному произведению прибавят 10 и число единиц того числа, которое задумали.

Пусть любой зритель скажет, что у него получилось. Вычтите из полученного результата число 35 (лучше сделать это в уме или на калькуляторе, не посвящая в свои действия зрителей), и вы сможете назвать задуманное зрителями число.

Пример. Все основано на математических закономерностях, о которых вашим зрителям знать необязательно. Как это выглядит в реальном фокусе? Например, зритель задумал число 38: 3 десятка и 8 единиц.

Умножаем 3 на 2, получается 6. Прибавляем к 6 число 5, получаем 11. Умножаем эту сумму на 5, получаем 55. Прибавляем 10 и получаем 65. Прибавляем число единиц (8) задуманного числа. Получаем 73, вычитаем 35.

В итоге задуманное число — 38.

Дмитрий Коробченко:

Фокус относится к случаю (2). Загадано двузначное число X, записанное как «ab»:

Зритель выполняет следующие операции:

Ответ от зрителя — Z. В уме отнимаем 35:

Ответ: X

5. Фокус с отгадыванием чисел

Вам понадобятся: заранее приготовленные листы бумаги (по числу зрителей), карандаши или ручки (по числу зрителей), калькуляторы.

фокуса. Попросите зрителей задумать какое-нибудь число.

Вопрос вы можете задать абсолютно любой, например: сколько дней в неделю вы хотели бы кататься на велосипеде, есть манную кашу, не ходить в школу, бегать по лужам. Весь смысл не в вопросе, а в задуманном зрителями числе.

Раздайте зрителям бумажки и ручки и попросите письменно ответить на ваш вопрос. Пусть каждый напишет, сколько дней в неделю он хотел бы есть морковку.

Теперь пусть каждый умножит это число на 2, затем к полученному числу морковок прибавит 5, после чего умножит эту сумму на 50. Теперь пусть каждый сделает следующее: если в этом году уже был день рождения, прибавить 1 750, если нет — 1 749. Теперь из этого числа каждый должен вычесть свой год рождения и к этому числу прибавить 7.

Теперь попросите любого из зрителей назвать получившуюся цифру. Должно получиться двузначное или трёхзначное число. Первая цифра — количество морковок, остальные — возраст человека.

Секрет. Секрет фокуса в тех числах, которые вы заставляете их прибавлять, отнимать, делить.

Пример. Допустим, вы загадали 2 дня в неделю для поедания морковки. Теперь умножьте 2 на 2, получится 4. Потом к 4 прибавьте 5, получится 9, затем 9 умножьте на 50, получится 450. Допустим, ваш день рождения 18 июля 1997 года.

Например, сейчас сентябрь и ваш день рождения уже прошёл. Значит, прибавьте к 450 число 1 750, получится 2 200. Теперь из числа 2 200 вычтите год рождения 1997, получится 203, к этому числу прибавьте 7. Результат — 210 (2 дня и 10 лет).

Во втором случае из числа 2 199 вычтите 1 997, получится число 202, прибавьте 7, получится 209. Значит, загадано 2 дня морковки и 9 лет загадавшему.

Совет. Перед выполнением этого математического фокуса раздайте зрителям калькуляторы, чтобы они не ошиблись в вычислениях, а для себя на первое время запишите на карточке порядок действий с цифрами: на что умножить, что прибавить, из чего вычесть.

Дмитрий Коробченко:

Фокус относится к случаю (2). Но этот фокус работает только в 2007 году. Для других годов нужно заменить число 1750 на другое.

https://www.youtube.com/watch?v=hEVPZy4xaVQ

Загадано число морковок X и возраст зрителя Y. Также в задаче участвуют:

Зритель выполняет следующие операции:

Ответ от зрителя — W.

Если возраст зрителя меньше 100 лет, то в получившемся числе [W=100*X+Y] возраст Y и количество морковок X никак не перемешаются. Последние две цифры числа W — это возраст Y, остальные — количество морковок X.

Пример:

Ответ: X, Y

Математика в школе: 9 вещей, которые бесят

10 математических секретов, которые научат легко считать в уме

Как математика спасла мир (и чуть не уничтожила)

Источник: https://mel.fm/poleznyye_navyki/5379208-math_focus

Учимся мгновенно считать

Научиться быстро складывать в уме. Суть ментальной методики. Трюк с угадыванием цифры

В нашем мире электронных технологий навык быстрого устного счёта своеобразная редкость. Вместо собственного мозга для вычислений человек использует калькулятор, сотовый телефон, компьютер. Из-за этого способности головного мозга постепенно понижаются.

Как спортсмены тренируют своё тело, так и обычные люди должны тренировать свой мозг. Без этого интеллектуальный труд понижается, мощность работы мозга уменьшается, потому что его извилинам так же нужны упражнения, как и мышцам. Поэтому важно знать, как быстро считать.

Дети, которые умеют быстро считать в уме – не гении, они просто держат свой мозг в тонусе. Быстро считать числа – важный жизненный навык. Молниеносный устный счёт помогает не только на уроках математики, но и в жизни.

Такие дети мгновенно соображают в специфических ситуациях, принимают нестандартные решения, могут абстрагироваться от ненужных вещей и сосредоточиться на главном.

Научить ребёнка быстро считать так же важно, как научить читать, писать, размышлять о главном.

ОСОБЕННОСТИ БЫСТРОГО СЧЁТА

Все методики базируются на «трёх китах»:

  • Постоянные упражнения. Необходимо каждый день тренироваться, чтобы не потерять навык, а также регулярно пополнять опыт. Лучше переходить от простых действий к сложным.
  • Алгоритм. Если ребенок знает методы и способы, которые помогут облегчить арифметические действия, ему будет проще учиться.
  • Математические способности и природный талант. Конечно, любой навык можно развить. Но если у малыша при этом есть предрасположенность к математике, то ему будет легче.

Чтобы развивать свой мозг вполне хватит и 15 минут в день. Главное – тренироваться ежедневно и понять, как научиться быстро считать.

Итоги занятий зависят от самого человека, от того, какие способности были у него изначально, и как интенсивно он занимается. Также повлиять может и возраст. У детей более пластичный мозг, поэтому они лучше усваивают информацию.

Но несмотря на индивидуальные особенности, прогресс ожидает всех, кто начал упражняться.

ПРАВИЛА БЫСТРОГО СЧЁТА

В математике, как и в любой другой науке, есть свой свод законов и правил, усвоив которые, ваш малыш станет безупречно выполнять любые арифметические действия. Вот некоторые из них:

  • От перемены мест слагаемых сумма не меняется;
  • При сложении трёх и более чисел любые два числа можно заменить их суммой;
  • Десятки прибавляем к десяткам, а единицы – к единицам;
  • При сложении и/или вычитании круглых десятков их можно складывать и вычитать как единицы.

ПРИЁМЫ БЫСТРОГО СЧЁТА

  • На 3 и 9 делятся числа, если сумма из цифр кратна этим показателям без остатка;
  • На 5 делятся круглые числа и те, в конце которых стоит 5;
  • На 6 делятся числа, которые делятся и на 2, и на 3;
  • На 10 делятся все круглые числа.

СЛОЖЕНИЕ ЧИСЕЛ

Чтобы научиться быстро складывать в уме большие числа, надо сначала научиться быстро складывать числа до 10. Потому что любой сложный арифметический пример – это всего на всего выполнение простых действий.

Основное правило сложения больших чисел – это поделить их на разные кусочки, а потом сложить эти кусочки между собой.

Допустим, нам необходимо решить данный пример: 356+728. Число 356 мы представляем, как 300+50+6.  А 728 у нас превращается в 700+20+8. Теперь складываем:

356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

ВЫЧИТАНИЕ ЧИСЕЛ

Вычитание отличается от сложения, но зная «секретный приём», в нём тоже будет легко разобраться. При вычитании необходимо поделить на кусочки только то число, которое мы отнимаем.

Возьмём пример 528-321. Поделим число 321 на кусочки. Тогда оно приобретёт такой вид: 321=300+20+1.

Теперь вычитаем: 528-300-20-1=228-20-1=208-1=207

УМНОЖЕНИЕ ЧИСЕЛ

Умножение – это многократное повторение числа. Если нужно умножить 7 на 3, это значит, что число 7 нужно повторить 3 раза.

Дело в том, что все сложные арифметические действия сводятся к простым. То есть нужно просто научить ребенка умножать все однозначные числа. Для этого придумали отличный тренажёр – таблицу умножения.

Её   ещё называют таблицей Пифагора. Считается, что её придумал известный математик. Самую древнюю таблицу нашли в Вавилоне. Ей примерно 4000 лет.

Выучив эту таблицу наизусть, вашему малышу не составит труда умножать в уме сложные числа.

Человечество придумало немало техник для того, чтобы овладеть быстрым устным счётом, и узнать, как научить ребенка быстро считать. Это и закон умножения двузначных чисел на 11, поразрядное сложение и вычитание, операции с привлечением опорных чисел при умножении до ста.

Однако наиболее эффективной и проверенной методикой быстрого счёта является ментальная арифметика. Это курс упражнений, направленный на увеличение скорости счёта с помощью абакуса. Абакус – это древние японские счёты.

После того, как ребёнок научился считать на них, он представляет абакус в уме. То есть считает в своём воображении.

После обучения ментальной арифметике у ребёнка развиваются умственные способности гораздо быстрее, чем у обычных ребят.

Специалисты считают, что чем раньше малыш начнётся обучаться ментальной арифметике, тем лучше. Ведь у детей раннего возраста нейронные связи головного мозга формируются очень энергично, а это способствует лучшему усваиванию информации.

Во время ментальных вычислений арифметический пример «читается» левым полушарием, а правое в это время создаёт образ. Затем решает пример и передает сообщение левому. Так образуются нейронные связи.

Закончив обучение по курсу «Ментальная арифметика» ребёнок сможет мгновенно решать арифметические действия с трёхзначными числами. Уже через полтора года ваш ребенок сможет выполнять сложные арифметические действия в уме, такие как сложение, вычитание, умножение многозначных чисел. Но это лишь вишенка на торте. Ментальная арифметика помогает:

  • Изучать иностранные языки
  • Сосредотачивать внимание на важном
  • Выполнять несколько дел одновременно
  • Экономить время
  • Улучшить успеваемость в школе.

Источник: https://zen.yandex.ru/media/id/5abb52660422b49e33205ed4/5d133cd72f262600b05ebee0

Как научиться быстро считать в уме? — Meduza

Научиться быстро складывать в уме. Суть ментальной методики. Трюк с угадыванием цифры
Перейти к материалам

Минимальные навыки счета, чувство числа — такой же элемент общечеловеческой культуры, как грамотное письмо и речь, владение иностранным языком, базовое представление об искусстве и окружающем мире.

Кроме того, когда вы легко считаете без подручных средств, вы чувствуете совершенно другой уровень управления реальностью — вы заранее знаете, сколько сдачи вам дадут в магазине или стоит ли набиваться всемером в лифт грузоподъемностью 400 килограммов.

Подумайте и о том, что калькулятор и действия в столбик — это же такая разновидность магии. Скорее всего, вы не понимаете, как это работает, и вынуждены просто доверять им. А когда вы хорошо понимаете, как устроены математические операции и можете их воспроизвести «руками», ваше чувство контроля (и уверенности в себе) получает серьезный бонус.

И наконец, устный счет развивает ваши ментальные способности: внимание, память, концентрацию, переключение между несколькими потоками мышления, а также может послужить средством для медитации или отвлечения от грустных мыслей.

Конечно, нет. В сети полно мобильных приложений, которые предложат вам тренировку математических навыков на любой вкус.

При выборе учтите, что хорошее приложение, как минимум, должно обладать достаточно гибкими настройками сложности и вести статистику решенных вами заданий.

Попробуйте эти приложения под iOS и Android или поищите альтернативные варианты в App Store и Google Play.

Основных математических действий всего четыре — сложение, вычитание, умножение и деление. У каждого действия есть свои особенности, но они не сложные.

Надо один раз разобраться, а потом тренироваться минут по 5−10 в день, и очень скоро вы почувствуете, что считаете лучше.

Скорее всего, за два-три месяца вы выйдете на достаточно приличный уровень, который можно будет поддерживать эпизодическими тренировками.

Начните с самого простого уровня — сложения однозначных чисел, и доведите его до совершенства: 99% правильных ответов, на каждый ответ 1−2 секунды. Для решения примеров «с переходом через 10» попробуйте использовать следующую технику — «Опора на десяток».

Допустим, вам нужно сложить 8 и 7.

1) Спросите себя, сколько числу 8 не хватает до 10 (это 2).

2) Представьте 7 как сумму 2 и какого-то второго кусочка (это 5).

3) Прибавляйте к 8 сначала ту часть числа 7, которой недоставало до 10, а потом тот второй кусочек — получится 10 и 5, и это, конечно, 15.

Здесь самый важный принцип — это сложение одинаковых разрядов друг с другом. Разбив оба числа на «разрядные части», начните складывать со старших разрядов — тысячи с тысячами, сотни с сотнями, десятки с десятками, единицы с единицами. То, что получится, при необходимости укрупняйте и снова считайте все вместе.

Например, как сложить 456 и 789?

1) 456 состоит из трех разрядных частей — 400, 50 и 6.

789 тоже разбивается на три разрядные части — это 700, 80 и 9.

2) Складываем сотни с сотнями: 400+700 = 1100, десятки с десятками: 50+80 = 130, единицы с единицами: 6+9 = 15.

3) Укрупняем, разбивая на удобные части, снова группируем и складываем одинаковые разряды: 1100+130+15 — это 1100+100+30+10+5, то есть, 1200+40+5 = 1245.

Поправка. При сложении разрядов мы перепутали единицы и к 6 прибавили 8 вместо 9. В итоге сумма тоже оказалась неправильной — 1244 вместо 1245. Приносим извинения за ошибку, и не повторяйте ее — внимательно следите за числами, особенно в устном счете!

И здесь надо начинать с базового уровня — вычитания однозначного числа из чисел первого и второго десятка — и довести этот навык до совершенства. Как и в случае сложения, проблемы обычно возникают с вычитанием «с переходом через 10». И здесь поможет аналогичный способ «опоры на десяток».

Допустим, нам нужно из 12 вычесть 8.

1) Спросим себя, сколько нужно отнять от 12, чтобы получилось 10 (это 2).

2) Будем из 12 вычитать 8 по частям — сначала вычтем эту 2, а потом все остальное. А остальное — это сколько? (это 6).

3) После вычитания 2 из 12 мы получили 10, и нужно вычесть еще 6, получится 4. Готово!

Не особенно. Важно только не путать технику вычитания с техникой сложения. При сложении нам было удобно разбивать каждое из чисел на разрядные части, а здесь мы разбиваем только то число, которое вычитаем.

Итак, допустим, нам нужно вычесть 512−259.

1) Число 259, которое мы вычитаем, состоит из трех разрядных частей — 200, 50 и 9. Их-то по очереди мы и вычтем.

2) 512−200 — вычитание сотен никак не затрагивает десятков и единиц числа 512, влияет только на сотни, так что результат будет такой — 312.

3) Из того, что получилось после вычитания сотен, теперь вычтем десятки, 312−50.

Это похоже на вычитание через десяток. Вычтем из 312 сначала 10 до целых сотен (единицы не будут затронуты), получим 302. А потом вычтем все остальное (всего нужно было вычесть 50, 10 уже вычли, осталось вычесть 40), получается 262.

4) Осталось вычесть единицы: 262−9.

Чистый переход через десяток — вычитаем сначала 2, получим 260, а потом вычитаем остальную часть, 7, получаем 260−7 = 253. Вот и ответ.

Начнем с умножения однозначных чисел. Для начала нужно вспомнить, что умножение — это когда несколько раз складывают одно и то же. Например, умножить 4 на 7 означает сложить четыре семерки. Пользуясь техникой сложения, мы можем легко посчитать — две семерки, 7 и 7, будет 14, если еще добавить третью 7, получится 21, и, добавляя последнюю, четвертую семерку, в результате получим 28.

Постепенно в результате тренировок вы запомните удобные вам опорные значения умножения и с их помощью сможете быстрее вычислять соседние. Например, если нужно умножить 6 на 7 (то есть, сложить шесть семерок), а вы помните, что 5 умножить на 7 (то есть, сложить пять семерок) будет 35, то чтобы получить итоговый результат, нужно просто добавить шестую семерку — получится 42.

Самым сложным примером в таблице умножения считается 7∙8. Для его запоминания есть неплохое мнемотехническое правило «пять шесть семь восемь», которое означает 56 = 7∙8.

Разберем на примере. Допустим, нам нужно умножить 468 на 6.

1) 468 состоит из 400, 60 и 8, и все это нужно умножить на 6. Что ж, по отдельности эти задачи не сложнее умножения однозначных чисел.

2) Идем от старшего разряда к младшему: 400∙6 = 2400 (поскольку 400 в 100 раз больше, чем 4, то и результат 400∙6 будет в 100 раз больше, чем результат 4∙6).

Соответственно, 60∙6 = 360, а 8∙6 = 48.

3) А теперь, как при сложении, складываем все это вместе, группируя одинаковые разряды:

(2000+400)+(300+60)+(40+8) = [перегруппируем] =

= 2000+(400+300)+(60+40)+8 = [сложим одинаковые разряды] =

= 2000+700+100+8 = [сгруппируем и сложим одинаковые разряды] =

= 2000+800+8 = [дальше укрупнять нечего, получаем ответ] = 2808.

Для обычного человека это уже высший пилотаж! Если вы освоили умножение двузначных, считайте, что вы приняты в мир элиты устного счета. Но на самом деле, и тут ничего принципиально сложного нет, просто выше нагрузка на краткосрочную память (заодно и потренируем ее).

Итак, например, умножим 78 на 56. Это означает, что нам нужно число 78 сложить («взять») 56 раз.

1) Эти 56 раз можно разбить на этапы — сначала 78 сложим 50 раз, потом 6 раз, а потом объединим результаты.

2) Число 78 сложить 50 раз несложно — это в 10 раз больше, чем сложить его 5 раз. 78∙5 = 70∙5+8∙5 = 350+40 = 390. А значит, 78∙50 = 3900, запомним это число.

3) Теперь посчитаем 78∙6 = 70∙6+8∙6 = 420+48 = 468.

4) Ну а теперь сложим вместе оба результата: 3900+468 = 3000+900+400+60+8 = 3000+1300+60+8 = 4368. Вуаля!

Поправка. На заключительном этапе при сложении 3900 и 468 мы неправильно разбили второе число на разряды — забыли про 60. В итоге в сумме получилось 4308. Приносим извинения за ошибку, и не повторяйте ее — нельзя терять в устном счете слагаемые.

Да, мы на финишной прямой. И снова начнем с самого простого уровня: деления на однозначное число тех чисел, которые знакомы нам по умножению однозначных.

Итак, что же такое деление? По сути, это «обратная» операция к умножению.

Например, разделить 56 на 7 — значит подобрать такое число, что если его умножить на 7, то получится 56. Поскольку вы к этому моменту уже хорошо ориентируетесь в таблице умножения, то наверняка вспомните, что именно 8, умноженное на 7, дает 56. Значит, искомое число — это 8, 56:7 = 8.

И так всегда — вспоминайте, какое число при умножении дает нужный результат — это и есть то число, которое вам нужно.

Давайте разделим 6144 на 8. Наш способ — «отрезать» от исходного числа максимальные «круглые» части, каждая из которых будет гарантированно делиться на 8 по таблице умножения.

1) Выделим из 6144 как можно большую часть, которая делится на 8 по таблице умножения. Это будет 5600, ведь 56 делится на 8, а следующее число, которое делится на 8 — это уже 64, что нам не подходит, так как 6400 больше, чем 6144. Прекрасно, 6144 — это 5600 и 544 (тут нам пригодился навык вычитания).

По ходу дела будем делить:

6144:8 = [выделяем максимальную удобную круглую часть] =

= (5600+544):8 = [выделенную часть делим на 8, а со второй поработаем на следующем шаге] =

= 700+544:8. 

700 запомним как частичный результат, а сами займемся делением 544:8.

2) Аналогично, из числа 544 самая большая часть, которую можно удобно разделить на 8 по таблице умножения, это 480 (ведь 48 делится на 8, а следующее число — 56 — нам не подходит, т. к. 560 > 544). Итак, 544 = 480+64.

Продолжаем деление:

544:8 = [выделяем максимальную удобную круглую часть] =

= (480+64):8 = [выделенную часть делим на 8, а со второй поработаем на следующем шаге] =

= 60+64:8.

60 добавим к 700, 700+60 = 760 — запомним это как вторую часть результата и перейдем к последнему делению, 64:8.

3) Оставшийся кусочек, 64, тоже делится на 8 по таблице умножения, 64:8 = 8.

Соответственно, полный результат деления — это 760+8=768. Все!

Техника деления на двузначное число — самая разнообразная, непохожая ни на что, изысканная. Познакомимся с ней на примере 5148:66.

1) Подгадаем, в каком десятке лежит наш результат. Напомним, что 5148:66 означает: мы ищем число, которое при умножении на 66 даст 5148. Будем использовать технику «пристрелки». 

Просто наугад попробуем число 20 как возможного кандидата. 20∙66 = 1320, это раза в 4 меньше, чем 5148, которое нам нужно. 

В 4 раза больше, чем 20 — это 80, попробуем его. 80∙66 = 5280, получилось больше, чем нужное 5148, но немного, скорее всего, это «верхний» десяток. 

Проверим для надежности 70, предыдущий перед 80 десяток. 70∙66 = 4620, это как раз меньше 5148, отлично! Значит, число, которое мы ищем, лежит между 70 и 80.

2) Воспользуемся математическим законом о последней цифре результата умножения двух чисел.

Оказывается, она всегда совпадает с последней цифрой результата умножения последних цифр этих чисел (попробуйте подумать, почему это так). Например, на какую цифру закончится 1234∙5678? На ту же, что и 48, то есть на 2 (4∙8 = 32). 

Поэтому, если мы ищем число, которое при умножении на 66 даст 5148, то чтобы гарантировать эту 8 на последнем месте, искомое число может заканчиваться только либо на 3, либо на 8 (3∙6 = 18, 8∙6 = 48).

3) С такими окончаниями между 70 и 80 у нас два всего кандидата — 73 и 78. 

5148 явно ближе к 5280, поэтому сперва проверим 78.

78∙66 = 78∙60+78∙6 = 4680+468 = 5000+148 = 5148, ура! 

(Ну а если бы результат не сошелся, то мы бы проверили второе число, и оно бы уже точно подошло).

Вот, в общем-то, и все способы, которые достаточно знать для тренировки уверенного счета в пределах 10000 (а умение работать в уме с большими числами, пожалуй, уже выходит за рамки необходимого общего развития).

Наверняка вы также столкнетесь с другими приемами, т. н. «хитростями» быстрого счета, но не торопитесь увлекаться ими. Кроме того, помните, что регулярность важнее интенсивности — старайтесь заниматься на тренажере каждый день по 5−10 минут, больше не нужно, иначе велик риск «перегореть» и забросить. 

В процессе занятия никуда не торопитесь — ловите свой ритм, делайте упор на правильность ответов, а не на скорость, скорость придет потом.

Обязательно пробуйте проговаривать свои действия вслух, особенно на первых порах — у вас будет шанс почувствовать, как все это похоже на стихи, да и решать так будет проще.

И не расстраивайтесь, если что-то не выходит — дорогу осилит идущий, и рано или поздно у вас точно все получится.

Источник: https://meduza.io/cards/kak-nauchitsya-bystro-schitat-v-ume

Эффективный счёт в уме или разминка для мозга

Научиться быстро складывать в уме. Суть ментальной методики. Трюк с угадыванием цифры

Эта статья навеяна топиком «Как и насколько быстро вы считаете в уме на элементарном уровне?» и призвана распространить приёмы С.А. Рачинского для устного счёта.

Рачинский был замечательным педагогом, преподававшим в сельских школах в XIX веке и показавшим на собственном опыте, что развить навык быстрого устного счёта можно.

Для его учеников не было особой проблемой посчитать подобный пример в уме:

Используем круглые числа

Один из самых распространённых приёмов устного счёта заключается в том, что любое число можно представить в виде суммы или разности чисел, одно или несколько из которых «круглое»:

Т.к. на 10, 100, 1000 и др.

круглые числа умножать быстрее, в уме нужно сводить всё к таким простым операциям, как 18 x 100 или 36 x 10. Соответственно, и складывать легче, «отщепляя» круглое число, а затем добавляя «хвостик»: 1800 + 200 + 190.

Еще пример:31 x 29 = (30 + 1) x (30 – 1) = 30 x 30 – 1 x 1 = 900 – 1 = 899.

Упростим умножение делением

При устном счёте бывает удобнее оперировать делимым и делителем нежели целым числом (например, 5 представлять в виде 10:2, а 50 в виде 100:2):
68 x 50 = (68 x 100) : 2 = 6800 : 2 = 3400;3400 : 50 = (3400 x 2) : 100 = 6800 : 100 = 68.
Аналогично выполняется умножение или деление на 25, ведь 25 = 100:4.

Например,
600 : 25 = (600 : 100) x 4 = 6 x 4 = 24;24 x 25 = (24 x 100) : 4 = 2400 : 4 = 600.

Теперь не кажется невозможным умножить в уме 625 на 53:
625 x 53 = 625 x 50 + 625 x 3 = (625 x 100) : 2 + 600 x 3 + 25 x 3 = (625 x 100) : 2 + 1800 + (20 + 5) x 3 = = (60000 + 2500) : 2 + 1800 + 60 + 15 = 30000 + 1250 + 1800 + 50 + 25 = 33000 + 50 + 50 + 25 = 33125.

Возведение в квадрат двузначного числа

Оказывается, чтобы просто возвести любое двузначное число в квадрат, достаточно запомнить квадраты всех чисел от 1 до 25. Благо, квадраты до 10 мы уже знаем из таблицы умножения.

Остальные квадраты можно посмотреть в нижеприведённой таблице:

Приём Рачинского заключается в следующем.

Для того чтобы найти квадрат любого двузначного числа, надо разность между этим числом и 25 умножить на 100 и к получившемуся произведению прибавить квадрат дополнения данного числа до 50 или квадрат избытка его над 50-ю. Например,

372 = 12 x 100 + 132 = 1200 + 169 = 1369; 842 = 59 x 100 + 342 = 5900 + 9 x 100 + 162 = 6800 + 256 = 7056;
В общем случае (M — двузначное число): Попробуем применить данный трюк при возведении в квадрат трёхзначного числа, разбив его предварительно на более мелкие слагаемые: 1952 = (100 + 95)2 = 10000 + 2 x 100 x 95 + 952 = 10000 + 9500 x 2 + 70 x 100 + 452 = 10000 + (90+5) x 2 x 100 + + 7000 + 20 x 100 + 52 = 17000 + 19000 + 2000 + 25 = 38025. Хм, я бы не сказала, что это сильно легче, чем возведение в столбик, но, возможно, со временем можно приноровиться. И начинать тренировки, конечно, следует с возведения в квадрат двузначных чисел, а там уже и до дизассемблирования в уме можно дойти.

Умножение двузначных чисел

Этот интересный приём был придуман 12-летним учеником Рачинского и является одним из вариантов добавления до круглого числа.

Пусть даны два двузначных числа, у которых сумма единиц равна 10: M = 10m + n, K = 10a + 10 – n. Составив их произведение, получим:

Например, вычислим 77 x 13. Сумма единиц этих чисел равна 10, т.к.

7 + 3 = 10. Сначала ставим меньшее число перед большим: 77 x 13 = 13 x 77.

Чтобы получить круглые числа, мы забираем три единицы от 13 и добавляем их к 77. Теперь перемножим новые числа 80 x 10, а к полученному результату прибавим произведение отобранных 3 единиц на разность старого числа 77 и нового числа 10:
13 x 77 = 10 x 80 + 3 x (77 – 10) = 800 + 3 x 67 = 800 + 3 x (60 + 7) = 800 + 3 x 60 + 3 x 7 = 800 + 180 + 21 = 800 + 201 = 1001. У этого приёма есть частный случай: всё значительно упрощается, когда у двух сомножителей одинаковое число десятков. В этом случае число десятков умножается на следующее за ним число и к полученному результату приписывается произведение единиц этих чисел. Посмотрим, как элегантен этот приём на примере.

48 x 42. Число десятков 4, последующее число: 5; 4 x 5 = 20. Произведение единиц: 8 x 2 = 16. Значит,

48 x 42 = 2016.
99 x 91. Число десятков: 9, последующее число: 10; 9 x 10 = 90. Произведение единиц: 9 x 1 = 09. Значит, 99 x 91 = 9009.
Ага, то есть, чтобы перемножить 95 x 95, достаточно посчитать 9 x 10 = 90 и 5 x 5 = 25 и ответ готов:
95 x 95 = 9025. Тогда предыдущий пример можно вычислить немного проще: 1952 = (100 + 95)2 = 10000 + 2 x 100 x 95 + 952 = 10000 + 9500 x 2 + 9025 = 10000 + (90+5) x 2 x 100 + 9000 + 25 = = 10000 + 19000 + 1000 + 8000 + 25 = 38025.

Вместо заключения

Казалось бы, зачем уметь считать в уме в 21 веке, когда можно просто подать ую команду смартфону? Но если задуматься, что будет с человечеством, если оно будет взваливать на машины не только физическую работу, но и любую умственную? Не деградирует ли оно? Даже если не рассматривать устный счёт как самоцель, для закалки ума он вполне подходит.

Использованная литература:

«1001 задача для умственного счёта в школе С.А. Рачинского».

  • устный счет
  • математика и реальная жизнь

Хабы:

  • 24 февраля 2017 в 00:55
  • 31 марта 2014 в 21:47
  • 11 ноября 2013 в 02:05

Источник: https://habr.com/post/207034/

Как научить ребенка считать в уме. Книга Ментальная арифметика

Научиться быстро складывать в уме. Суть ментальной методики. Трюк с угадыванием цифры

Почти все слышали о курсах ментальной арифметики для детей, но многие даже не пытались выяснить, о чем, собственно, речь — все равно водить ребенка на специальные занятия нет возможности.

Однако мнение, что освоить ментальную арифметику можно, только занимаясь очно, недавно пошатнула книга, разработанная для самостоятельных занятий родителей с детьми.

Итак, чем же ментальная арифметика может быть полезна для ребенка и с чего начать?

Наверняка вы видели в новостях, как группа детишек с умопомрачительной скоростью складывает и вычитает пятизначные числа. Думаете, все они вундеркинды? Вовсе нет, просто они освоили ментальную арифметику.

Ментальная арифметика — это быстрый устный счет в уме, при котором у человека задействованы одновременно два полушария головного мозга, а не только левое, как при традиционных вычислениях. В более общем понимании эта оригинальная система развития интеллекта формирует умственные и творческие способности ребенка, помогает ему лучше учиться в школе, повышает уверенность в себе.

Зачем развивать оба полушария мозга

Вам, наверное, встречалась такая статистика: только 5% людей достигают значительных успехов в жизни. Остальные 95% лишь мечтают об этом, но их мечты почему-то не сбываются. Возможность добиваться хороших результатов в различных сферах жизни напрямую связана с гармоничным развитием мозга человека — это подтверждают исследования ученых.

К сожалению, у большей части населения земли левое полушарие развито лучше, чем правое. Иными словами, у них хорошо развито логическое мышление. А вот творческое мышление — интуиция, выбор правильных путей и поступков — работает из рук вон плохо.

Форма двух полушарий похожа, но функции у них разные. Левое имеет тесные связи с работой языка, абстрактного и логического мышления. Правое имеет дело с объектом мышления: изображение, формы, творчество и интуиция.

В идеале надо одинаково использовать оба полушария, однако современная система образования почти во всех странах уделяет основное внимание развитию левого полушария.

И наши дети в школах усердно занимаются точными науками и развивают логическое мышление.

Развитие правого полушария отдано на откуп родителям, и каждый сам для себя решает, сколько времени будет отведено для творчества, фантазирования, мечтаний, креативности и нестандартного мышления.

При чем здесь творчество?

Методика изучения арифметики, получившая название “Ментальная арифметика”, — это программа развития умственных способностей и творческого потенциала с помощью математических вычислений. Умный человек — это думающий человек.

Что такое думать? Думать — это направлять свои мысли на конкретные объекты или образы и представлять различные сценарии событий. Это позволяет человеку предугадывать, что произойдет с ним в том или ином случае, и избегать нежелательных ситуаций.

Если вы заранее все продумали и уверены, что ваши намерения принесут только выгоду и не скрывают никаких подводных камней, можно смело браться за дело!

Воображение — это способность человека к построению в сознании образов, представлений, идей или объектов и манипуляции ими.

Это играет ключевую роль в следующих психических процессах: моделирование, планирование, творчество, игра, память. В широком смысле всякий процесс, протекающий в образах, является воображением.

Оно является основой наглядно-образного мышления и позволяет человеку ориентироваться в ситуации и решать задачи, не совершая практических действий.

Главное преимущество ментальной арифметики в том, что дети не просто заучивают определенные числа и примеры, а запоминают цифры в виде картинок. Это не только помогает ребенку считать, как гениальный математик, но и развивает его память и образное мышление.

Что нужно для того, чтобы начать осваивать ментальную арифметику?

Чтобы овладеть этой чудо-наукой, не нужны новомодные гаджеты. Вам понадобятся только… счеты. Но не советский предок калькулятора, а специальные китайские счеты, или абакус. Купить его несложно через интернет. С помощью этого нехитрого инструмента можно выполнять основные арифметические действия: сложение, вычитание, умножение и деление.

Костяшки современного абакуса имеют заостренную форму. Для манипуляций используются только два пальца: указательный и большой, но при этом задействуются обе руки (это отлично тренирует мелкую моторику). Дети быстро осваивают ручной счет и затем переходят от реального абакуса к воображаемому.

Занимайтесь с ребенком не более одного часа в день, не нужно переутомлять его. Успех обучения во многом зависит от правильного подхода и настроя.

Как настроить ребенка на обучение?

  • Самое главное — любите ребенка и стройте все только на этом.
  • Обсудите с ребенком важность обучения арифметике и образования в целом.
  • Воспитывайте у ребенка любовь к учебе. От того, как вы отзываетесь об обучении и образовании в целом, зависит и настрой вашего ребенка.
  • Дайте понять ребенку, что он всегда может положиться на вас в случае неудачи.

    Поддерживайте его веру в собственные силы, повышайте самооценку, но подчеркните, что его успех зависит только от него самого.

  • Четко ставьте цели перед ребенком: чего хотим добиться, какими знаниями обладать.
  • Определяйте сроки реализации поставленной цели (когда надо сделать задание, выучить материал).

  • Повышайте мотивацию ребенка, поощряя его за достижения, особенно те, которые дались ему с трудом.
  • Учите ребенка самостоятельности — он сам должен отвечать за выполнение поставленных задач. Таким образом, у ребенка будет появляться мотивация не только к учебе, но и к самосовершенствованию в течение всей жизни.
  • Не сравнивайте результаты обучения ребенка, особенно негативные, с другими ребятами — это может привести к раздражению и нежеланию продолжать.

Как получить максимальный результат от обучения

  • Знания фиксируются в памяти не в момент обучения, а при повторении через определенные временные интервалы. Повторения нужны не только тогда, когда мы учим материал, но и тогда, когда надо закрепить в памяти пройденное. При повторении заученного материала прочность и длительность его сохранения многократно возрастают.
  • Убедитесь, что ваш ребенок может визуализировать. Попросите его закрыть глаза и представить себе абакус. Пусть он расскажет, как он его видит. Сколько спиц, сколько косточек внизу и вверху. Это упражнение — одно из ключевых в ментальной арифметике.

    Освоив визуализацию, ребенок в определенный момент отложит абакус в сторону и начнет производить вычисления в уме.

  • Всегда применяйте принцип “зеленой ручки”. Не концентрируйте внимание ребёнка на ошибках, иначе он запомнит только то, что сделано неправильно.

    Ребёнок в первую очередь обращает внимание на красные подчеркивания и не воспринимает идеальный и правильный результат. Хотим мы того или нет, но в подсознании остается то, что выделено. Поэтому всегда делаем акцент на правильное — на то, что ребенку удалось сделать хорошо.

    Тогда он получает совсем другие эмоции, другое восприятие и подсознательно стремится повторить то, что было идеальным! Не приучайте вашего ребенка выделять плохое — это закрепляется в подсознании и остается с ним до старости, становясь самой частой причиной неудовлетворенности в жизни.

А я когда считаю в уме, по сути считаю на пальцах)) мысленно напрягаю соответствующий палец. Не столько визуализирую, сколько сенсорирую, получается )))ттт вполне быстро считаю, хотя в те времена, когда я училась в техническом вузе и не было калькулятора, я считала в уме быстрее и более сложные вещи.

И помнится в началке у моих детей большое внимание уделяли автоматизации дополнения до десятка. Вот именно так я и суммирую-вычитаю в уме, мысленно сразу дополняю до целого десятка и плюс остающийся хвостик сверху. И умножение/деление тоже в целом похоже. Сразу выделяем ближайшее целое по таблице умножения, а остающийся хвостик так же делим/умножаем, мысленно дополняя до числа, которое делится нацело.

09.07.2019 10:37:00, Наташа Р

Всего 3 сообщения Прочитать обсуждение полностью.

Источник: https://www.7ya.ru/article/Kak-nauchit-rebenka-schitat-v-ume-25856/

WikiMedForum.Ru
Добавить комментарий