Применение lm317t. Стабилизаторы тока на lm317, lm338, lm350 и их применение для светодиодов. Схемы включения lm317. Плюсы и минусы

LED. LM317 в стабилизаторе тока светодиодов. Или как надежно запитать светодиоды чтобы стабильно работали, не моргали и не сгорали. — DRIVE2

Применение lm317t. Стабилизаторы тока на lm317, lm338, lm350 и их применение для светодиодов. Схемы включения lm317. Плюсы и минусы

Всё больше распространяется мода на светодиоды, в настоящее время многие сами ставят диодные ленты (для дневного света и многого другого ).Наткнулся на следующую статью, которой и хочу со всеми поделиться:

“В настоящее время в нашу жизнь интенсивно внедряются светодиоды. Основная проблема оказывается как из запитать.

Дело в том, что главным параметром для долговечности светодиода является не напряжение его питание, а ток который по нему течет. Например, красные светодиоды по напряжению питания могут иметь разброс от 1.8 вольта до 2,6, белые от 3,0 до 3,7 вольта. Даже в одной партии одного производителя могут встречаться светодиоды с разным рабочим напряжением.

Нюанс заключается в том, что светодиоды изготовленные на основе AlInGaP/GaAs (красные, желтые, зеленые — классические) довольно хорошо выдерживают перегрузку по току, а светодиоды на основе GaInN/GaN (синие, зеленые (сине-зеленые), белые) при перегрузке по току например в 2 раза живут … часа 2-3! Так, что если желаете чтобы светодиод горел и не сгорел в течении ходя бы 5 лет позаботьтесь о его питании.

Если мы устанавливаем светодиоды в цепочки (последовательное соединение) или подключаем параллельно добиться одинаковой светимости можно только если протекающий ток будет через них одинаков.

Еще хочу заострить внимание на том что светодиоды очень боятся обратного напряжения, оно очень низкое 5 — 6 вольт, импульсы обратного тока (а автомашинах) способны значительно сократить срок службы.

Значить как сделать самый простой стабилизатор тока?

Для этого берем LM317 если нужно стабилизировать ток в пределах до 1 ампера или LM317L если необходима стабилизация тока до 0,1 А. Даташит можно скачать здесь!

Так выглядят стабилизаторы LM317 с рабочим током до 1,5 А.

А так LM317L с рабочим током до 100 мА.

Для тех кто не знает Vin — это сюда подается напряжение, Vout — отсюда получаем…, а Adjust вход регулировки. В двух словах LM317 это стабилизатор с регулируемым выходным напряжением.

Минимальное выходное напряжение 1,25 вольта (это если Adjust “посадить” прямо на землю) и до входного напряжения минус наши 1,25 вольта. Т.К.

максимальное входное напряжение составляет 37 вольт, то можно делать стабилизаторы тока до 37 вольт соответственно.

Для того чтобы LM317 превратить в стабилизатор тока нужен всего 1 резистор!

Схема включения выглядит следующим образом:

С формулы внизу рисунка очень просто рассчитать величину резистора для необходимого тока. Т.е сопротивление резистора равно — 1,25 разделить на требуемый ток. Для стабилизаторов до 0,1 ампера мощность резистора 0,25 W вполне годиться. На токи от 350 мА до 1 А рекомендуется 2 вата. Для тех кто не хочет считать привожу таблицу резисторов на токи для широко распространенных светодиодов.

Ток (уточненный ток для резистора стандартного ряда) Сопротивление резистора Примечание20 мА 62 Ом стандартный светодиод30 мА (29) 43 Ом “суперфлюкс” и ему подобные40 мА (38) 33 Ом “суперфлюкс” и ему подобные80 мА (78) 16 Ом четырехкристальные350 мА (321) 3,9 Ом одноватные750 мА (694) 1,8 Ом трехватные

1000 мА (962) 1,3 Ом 5 W

А теперь пример с учетом всего выше сказанного. Сделаем стабилизатор тока для белых светодиодов с рабочим током 20 мА, условия эксплуатации автомобиль (сейчас так моден световой тюннинг…).

Для белых светодиодов рабочее напряжение в среднем равно 3,2 вольта. В автомашине (легковой) бортовое напряжение колеблется (в опять же среднем) от 11,6 вольт в режиме работы от аккумулятора и до 14,2 вольта при работающем двигателе. Для российских машин учтем выбросы в “обратке” (и в прямом направлении до 100 ! вольт).

Включить последовательно можно только 3 светодиода — 3,2*3 = 9,6 вольта, плюс 1,25 падение на стабилизаторе = 10,85. Плюс диод от обратного напряжения 0,6 вольта = 11,45 вольта.

Полученное значение 11,45 вольта ниже самого низкого напряжения в автомобиле — это хорошо! Это значит на выходе будет всегда наши 20 мА независимо от напряжения в бортовой сети автомобиля. Для защиты от выбросов положительной полярности поставим после диода супрессор на 24 вольта.

P.S. Подбирайте количество светодиодов так чтобы на стабилизаторе оставалось как можно меньше напряжения (но не меньше 1,3 вольта), это надо для уменьшения рассеиваемой мощности на самом стабилизаторе. Это особенно важно для больших токов. И не забудьте, что на токи от 350 мА и выше LMка потребует радиатор.

наша схема:

В принципе супрессор для дешевых светодиодов можно и не ставить, но диод для в автомобиле обязателен! Рекомендую его ставить даже если вы просто подключаете светодиоды с гасящим резистором.

Как рассчитывать сопротивление резистора для светодиодов я думаю описывать излишне, но если надо пишите на форуме.

Еще забыл: — по схеме, если непонятно! На К1 подаем плюс “+”, а на К2 минус (на шасси автомашины садим).”

P.S.: Я просто выложил статью, автор не известен, увы, подсказать по каждому конкретному случаю не могу!

P.P.S: Подписываемся на мой “спорткар”: www.drive2.ru/r/hyundai/875516/

Источник: //www.drive2.ru/b/288230376151856806/

Стабилизатор тока на LM317: технические характеристики и схема подключения

Применение lm317t. Стабилизаторы тока на lm317, lm338, lm350 и их применение для светодиодов. Схемы включения lm317. Плюсы и минусы

Спрос на системы, стабилизирующие напряжение, значительно вырос за последние годы. Особенный интерес проявляется к приборам, работающим с искусственными источниками освещения и в частности со светодиодами.

Стабилизатор тока на lm317 – это простое, недорогое, но надежное устройство, которое можно приобрести или собрать самостоятельно.

В последнем случае необходимо знать основные правила приборостроения, требования безопасности при работе с электричеством и подготовить стандартный набор элементов.

Для чего необходима стабилизация тока и напряжения

Стабилизатор тока на LM317 для светодиодов

Количество электрических устройств в домах постоянно растет. За последние годы число электроприборов увеличилось в несколько раз. Как результат – возросла потребность в уровне напряжения в электрических сетях. При этом большая часть зданий (жилых и производственных) и электростанций построена более 30-40 лет назад.

Некоторые современные приборы производят со встроенными стабилизаторами – небольшими схемами для предотвращения поломок от скачков напряжения. Но большая часть не содержит дополнительных устройств и даже малый перепад в сети грозит перегоранием. В группе повышенного риска крупная бытовая техника (не цифровая). В частности бойлеры и стиральные машины.

Чтобы избежать повреждений и обеспечить стабильное напряжение в сети, устанавливают стабилизаторы. В каждом доме это делать необязательно.

Если в здании постоянная подача тока без серьезных перепадов (в пределах 220 Вольт с максимальной погрешностью 10%), в дополнительных устройства нет смысла.

Но когда скачки постоянны, установка стабилизатора позволит сберечь технику и обеспечит электричеством.

Виды стабилизирующих устройств

Перед покупкой прибора следует ознакомиться с основными типами и особенностями. Каждый имеет преимущества и недостатки, предназначены для разного уровня напряжения и количества приборов. Отличаются и принципы работы.

Релейные

Релейный стабилизатор напряжения

Оптимальный вариант для частных и дачных домов, квартир. На трансформаторе установлено несколько магнитных обмоток. В момент перепада напряжения между ними происходит переключение, что позволяет сохранить поток напряжения в прежнем режиме. К недостаткам относят:

  • изменение потока энергии в ступенчатом режиме (резко, прерывисто);
  • искривление синусоиды потока напряжения;
  • небольшая мощность на моменте отдачи.

Стоимость подобных устройств значительно ниже других моделей стабилизаторов. Отзывы владельцев хорошие, прибора оказывается достаточно для домашних сетей.

Электронные

Тиристорный регулятор напряжения РСТ

Различают два типа стабилизаторов электронного «наполнения» – симисторные и тиристорные. В первых переключение между обмотками в автоматическом режиме осуществляет небольшой механизм – симистор.

КПД прибора высокое, срабатывает быстро. Существенный плюс для бытового использования – бесшумность работы. Второй вид не так эффективен, обычно используется для стабилизации домашних сетей без большого напряжения.

Наиболее заметный недостаток – стоимость.

Электромеханические

Другие названия – сервомоторные, сервоприводные. Принцип работы – с помощью электропривода угольный электрод перемещается по обмоткам, создавая бесперебойное напряжение. Часто покупается для бытовых нужд и небольших помещений (дом, дача, офис). Плюсы – цена, компактность, плавное переключение. Минусы – шум, малая скорость переключения.

Феррорезонансные

Феррорезонансный стабилизатор

В последние годы редко используется из-за появления более современных устройств.

Эффект феррорезонанса возникает в системе взаимодействия трансформатора и конденсатора. Устройства крупногабаритные, шумные, не работают при резких и значительных перегрузках.

Преимущества – длительный срок эксплуатации, возможность использования в помещениях с высокой влажностью.

Инверторные

Устройства данного типа являются мощными и дорогостоящими. Используются в быту и крупных производственных помещениях. Основное отличие – кварцевый генератор и контроллер, которые преобразуют напряжение на входе в постоянный ток, а на выходе – в переменный.

Одновременное двойное формирование позволяет работать с различным уровнем тока – от 115 до 300 Вольт.

Преимущества – отсутствие шума, малый размер, быстрое переключение и регулирование, другие дополнительные возможности (например, защита бытовой техники от чрезмерного напряжения).

Схемы линейных устройств

Стабилизатор тока на lm317 – это прибор, работающий по линейной схеме переключения напряжения. Подобные микросхемы используются для сетей, где не требуется высокий КПД и чрезмерная мощность. В частности – для поддержки работы светодиодов. Преимущества:

  • защита от резких скачков, чрезмерного уровня электроэнергии;
  • переполюсовка тока на входном элементе;
  • отсутствие дополнительных деталей и устройств.

К недостаткам относят меньший КПД – напряжение, полученное сверх необходимого, перерабатывается в нагревание, поэтому дополнительное охлаждение обязательно.

Для стабильной работы требуется плюсовая разница токов на входе и выходе – линейные стабилизаторы перестают функционировать при падении в 0,4В (даже при 0,5В). Поэтому схема бп на lm317 с регулировкой тока и напряжения не применяется для крупногабаритных устройств и «тяжелых» сетей.

Основные характеристики

Подключение схемы к батарее на 9V типа Крона

Стабилизатор напряжения на lm317 работает в определенном диапазоне подачи электроэнергии. Пределы – минимум 1,25В, максимум 37В. На выходе мощность напряжения не превышает 1,5 Ампер, погрешность при нестабильном подключении составляет до 0,1%.

Регулятор напряжения на микросхеме lm317 имеет системы дополнительной внутренней защиты: от коротких сетевых замыканий, от теплового перенапряжения, от чрезмерного рассеивания «лишнего» напряжения.

Тепловое ограничение обеспечивают специальные микродатчики, которые гарантируют защиту техники от превышения рассеиваемой мощности – если подобное произойдет, устройство просто отключится и не пострадает.

Мощность и входное напряжение

Для работы регулятора тока на схеме lm317 напряжение на входной части не должно быть выше 40 Вольт. При этом минимальная разница тока на входах и выходах должна превышать 2 Вольта.

Чтобы работал регулятор напряжения на lm317, схема не должна получать нагрузку больше 1,5А. Если не будет дополнительного охлаждения, уровень снизится. Примерную мощность вычисляют, умножая два показателя – мощность электроэнергии на выходе и разница потенциалов входа и выхода.

При температуре окружающей среды до 30° по Цельсию допускается рассеивание мощности до 1,5Вт (если нет теплоотвода). При нормальном уровне теплоотведения допускается рассеивание до 20Вт.

Конструкция устройства

Стабилизатор с двумя резисторами

Схема блока питания стабилизатора на lm317 с регулировкой тока и напряжения при минимальном обустройстве имеет два резистора, разница в сопротивлении которых регулирует напряжение на выходе и конденсаторах. Среднее значение тока на опорных элементах составляет 1,25 В. Сопротивление не должно превышать 240 Ом.

Корпус стабилизатора на схеме lm317 изготавливается из пластмассы. Возможные варианты: ТО 220 и 220FP, SOT23 и D2PAK. Системы внутренней защиты позволяют устройству работать в случае отключения входа регулировки.

Импульсные драйверы

Драйверы с импульсной системой – это те же стабилизаторы напряжения. Напряжение переменного типа позволяет регулировать работу устройства. Если уровень составляет меньше 2-3 Ампер, не требуется дополнительное теплоотведение.

Импульсные приборы «нарезают» входящий ток, чтобы на выходе получить нужный уровень напряжения. Может работать с сетями высоких нагрузок. Минусы – необходим отдельный источник питания, стоимость, внешнее «лишнее» электромагнитное поле. Сложно собрать в домашних условиях.

Схемы включения

Схема включения блока питания на lm317 с регулировкой тока и напряжения позволяет использовать стабилизатор в сетях с нестандартным напряжением. Чтобы устройство работало, необходимо минимум два резистора. Наиболее важные показатели – напряжение опорного пункта, уровень тока на выходе.

Простейший стабилизированный блок питания

Схема простого блока питания

Стабилизаторы напряжения необходимы не только для защиты бытовой и производственной техники. В лабораторных условиях устройства помогают избежать чрезмерных потоков электроэнергии и перегорания сетей. Поэтому начинающие и профессиональные техники стремятся использовать хотя бы простые стабилизирующие блоки.

Основные плюсы:

  • несложная сборка;
  • надежная работа;
  • недорогие и доступные детали.

Самодельный регулируемый блок питания

К недостаткам относят низкий выходящий КПД, использование радиаторов крупных размеров, крупногабаритность устройства.

Для стандартного прибора потребуется несколько элементов:

  • схема lm317;
  • транзистор с пластиковым корпусом;
  • диод;
  • два резистора;
  • два конденсатора;
  • диодный мост.

Минимальное количество деталей и простая конструкция позволят быстро собрать стабилизатор напряжения и использовать его для небольшой сети.

Показатели элементов не имеют критического значения. Например, резисторы на R1 могут иметь значения от 30 до 50 Ом, а диод не устанавливать.

Блок питания на интегральном стабилизаторе

Интегральные стабилизаторы положительного напряжения

Устройства с интегральной системой работы используют в стабилизаторах напряжения, аудиосистемах, усилителях, блоках питания и других. Все детали конструкции соединены посредством кремниевого кристалла так, чтобы их последовательность составляла стабилизатор. В электротехнике используют два типа:

  • с использованием полупроводника;
  • с применением пленочных элементов (гибридный).

Стандартная схема включает несколько типичных деталей: опорного источника, усилителя, регулирующего элемента, защитный механизм для отключения и предотвращения замыканий.

Микросхемы интегрального типа являются устройствами с завершенным функциональным циклом. Каждая имеет пути входа, выхода и заземления.

Использовать подобные схемы можно только с определенными показателями напряжения. Допустимые пределы – от 5 до 24В, для тока – меньше 1А.

Интегральные схемы имеют ограничитель напряжения на выходе. Также устанавливается дополнительная защита от перегрева.

Схема стабилизатора с регулируемым блоком питания

Мост-выпрямитель в подобных устройствах позволяет преобразовать переменный поток тока в постоянный. Один из конденсаторов фильтрует энергию с пульсирующими характеристиками, другой – делает переход напряжения более плавным. Такой тип дает возможность стабилизатору работать на уровне низких частот постоянного тока.

Выбор резистора осуществляется по значению номинала, допустимого для стабилизатора. Погрешность должна быть минимальной. Оптимальный вариант – точный расчет.

Область применения

Стабилизаторы на основе микросхемы LM317 используются, чтобы стабилизировать основные показатели технических приборов. Такое устройство легко собрать самостоятельно, а прибор заводского изготовления стоит недорого. Для данного класса имеет отличные эксплуатационные данные и срок эксплуатации, если не будет чрезмерно сильных перепадов электроэнергии.

Недостатком является предел напряжения – не больше 3В. Стабилизатор на основе корпуса ТО 220 – самая доступная модель, которую используют в нескольких областях:

  • бытовые (домашние) сети;
  • лабораторные условия;
  • LED-освещение (светодиоды).

Системы стабилизации напряжения на базе микросхемы LM317 – это надежные, простые и удобные устройства. Стоимость небольшая, но характеристики положительные. Подобные стабилизаторы часто используют для светодиодов в автомобилях.

Источник: //StrojDvor.ru/elektrosnabzhenie/reguliruemyj-stabilizator-toka-na-lm317-dlya-svetodiodov/

LM317T схема включения

Применение lm317t. Стабилизаторы тока на lm317, lm338, lm350 и их применение для светодиодов. Схемы включения lm317. Плюсы и минусы

В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасное решение использование популярного интегрального стабилизатора LM317T с характеристиками:

  • способен работать в диапазоне выходных напряжений от 1,2 до 37 В;
  • выходной ток может достигать 1,5 А;
  • максимальная рассеиваемая мощность 20 Вт;
  • встроенное ограничение тока, для защиты от короткого замыкания;
  • встроенную защиту от перегрева.

У микросхемы LM317T схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

У стабилизатора два важных параметра: опорное напряжение (Vref) и ток вытекающий из вывода подстройки (Iadj).
Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В.

Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1. Таким образом если резистор R2 замкнуть, то на выходе схемы будет 1,25 В, а чем больше будет падение напряжения на R2 тем больше будет напряжение на выходе.

Получается что 1,25 В на R1 складываться с падением на R2 и образует выходное напряжение.

Второй параметр – ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум 100 мкА, но в реальных условиях он может достигать 500 мкА.

Поэтому чтобы обеспечить стабильное выходное напряжение приходиться через делитель R1-R2 гнать ток от 5 мА. А это значит что сопротивление R1 не может больше 240 Ом, кстати именно такое сопротивление рекомендуют в схемах включения из datasheet.

Первый раз, когда я посчитал делитель для микросхемы по формуле из LM317T datasheet, я задавался током 1 мА, а потом я очень долго удивлялся почему напряжение реальное напряжение отличается. И с тех пор я задаюсь R1 и считаю по формуле:R2=R1*((Uвых/Uоп)-1).

Тестирую в реальных условиях и уточняю значения сопротивлений R1 и R2.

Посмотрим какие должны быть для широко распространенных напряжений 5 и 12 В.

R1, ОмR2, Ом
LM317T схема включения 5v120360
LM317T схема включения 12v2402000

Но я бы посоветовал использовать LM317T в случае типовых напряжений, только когда нужно срочно что-то сделать на коленке, а более подходящей микросхемы типа 7805 или 7812 нету под рукой.

А вот расположение выводов LM317T:

  1. Регулировочный
  2. Выходной
  3. Входной

Кстати у отечественного аналога LM317 — КР142ЕН12А схема включения точно такая же.

На этой микросхеме несложно сделать регулируемый блок питания: вместо постоянного R2 поставьте переменный, добавьте сетевой трансформатор и диодный мост.

На LM317 можно сделать и схему плавного пуска: добавляем конденсатор и усилитель тока на биполярном pnp-транзисторе.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Схема стабилизатора тока ещё проще, чем напряжения, так как резистор нужен только один. Iвых = Uоп/R1.
Например, таким образом мы получаем из lm317t стабилизатор тока для светодиодов:

  • для одноватных светодиодов I = 350 мА, R1 = 3,6 Ом, мощностью не менее 0,5 Вт.
  • для трехватных светодиодов I = 1 А, R1 = 1,2 Ом, мощностью не менее 1,2 Вт.

На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

Если в схеме потребуется стабилизировать напряжения при токах более 1,5 А, то все также можно использовать LM317T, но совместно с мощным биполярным транзистором pnp-структуры.
Если нужно построить двуполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора — LM337T.

Но у данной микросхемы есть и ограничения. Она не является стабилизатором с низким падением напряжения, даже наоборот начинает хорошо работать только когда разница между выходным и выходным напряжением превышает 7 В.

Если ток не превышает 100мА, то лучше использовать микросхемы с низким падением LP2950 и LP2951.

Мощные аналоги LM317T — LM350 и LM338

Если выходного тока в 1,5 А недостаточно, то можно использовать:

  • LM350AT, LM350T — 3 А и 25 Вт (корпус TO-220)
  • LM350K — 3 А и 30 Вт (корпус TO-3)
  • LM338T, LM338K — 5 А

Производители этих стабилизаторов кроме увеличения выходного тока, обещают сниженный ток регулировочного входа до 50мкА и улучшенную точность опорного напряжения.
А вот схемы включения подходят от LM317.

Источник: //HardElectronics.ru/lm317t-sxema-vklyucheniya.html

Стабилизатор тока на lm317, lm338, lm350 для светодиодов

Применение lm317t. Стабилизаторы тока на lm317, lm338, lm350 и их применение для светодиодов. Схемы включения lm317. Плюсы и минусы

В последнее время интерес к схемам стабилизаторов тока значительно вырос.

И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное питание по току.

Наиболее простой, дешевый, но в то же время мощный и надежный токовый стабилизатор можно построить на базе одной из интегральных микросхем (ИМ): lm317, lm338 или lm350.

Datasheet по lm317, lm350, lm338

Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).

Все три ИМ имеют схожую архитектуру и разработаны с целью построения на их основе не сложных схем стабилизаторов тока или напряжения, в том числе применяемых и со светодиодами. Различия между микросхемами кроются в технических параметрах, которые представлены в сравнительной таблице ниже.

 LM317LM350LM338
Диапазон значений регулируемого выходного напряжения1,2…37В1,2…33В1,2…33В
Максимальный показатель токовой нагрузки1,5А
Максимальное допустимое входное напряжение40В35В35В
Показатель возможной погрешности стабилизации~0,1%~0,1%~0,1%
Максимальная рассеиваемая мощность*15-20 Вт20-50 Вт25-50 Вт
Диапазон рабочих температур0° – 125°С0° – 125°С0° – 125°С
DatasheetLM317.pdfLM350.pdfLM338.pdf

* – зависит от производителя ИМ.

Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.

Lm317, самая распространенная ИМ, имеет полный отечественный аналог — КР142ЕН12А.

Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220. Микросхема имеет три вывода:

  1. ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
  2. OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
  3. INPUT. Вывод для подачи напряжения питания.

Схемы и расчеты

Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора. На вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.

Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I0 (1), где I0 – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: PR=I02×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.

Полученные расчетные данные для резистора округляют в большую сторону, согласно номинальному ряду.

Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности.

Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода.

При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.

Онлайн калькулятор lm317, lm350 и lm338

Допустим, необходимо подключить мощный светодиод с током потребления 700 миллиампер. Согласно формуле (1) R=1,25/0,7= 1.786 Ом (ближайшее значение из ряда E2—1,8 Ом). Рассеиваемая мощность по формуле (2) будет составлять: 0.7×0.7×1.8 = 0,882 Ватт (ближайшее стандартное значение 1 Ватт).

На практике, для предотвращения нагрева, мощность рассеивания резистора лучше увеличить примерно на 30%, а в корпусе с низкой конвекцией на 50%.

Кроме множества плюсов, стабилизаторы для светодиодов на основе lm317, lm350 и lm338 имеют несколько значительных недостатков – это низкий КПД и необходимость отвода тепла от ИМ при стабилизации тока более 20% от максимального допустимого значения. Избежать этого недостатка поможет применение импульсного стабилизатора, например, на основе ИМ PT4115.

Источник: //ledjournal.info/shemy/stabilizator-toka-na-lm317-dlya-svetodiodov.html

Характеристики микросхемы lm317t

Применение lm317t. Стабилизаторы тока на lm317, lm338, lm350 и их применение для светодиодов. Схемы включения lm317. Плюсы и минусы

Регулируемый трехвыводный линейный стабилизатор напряжения и тока LM317t, характеристики которого позволяют используется его в схемах включения регулируемых блоков питания. Очень часто используется в светодиодных устройствах.

В этой статье Вы узнаете основные возможности этой микросхемы, eё распиновку, технические параметры и принцип работы. Увидите, как используя всего несколько радиодеталей можно добиться получения необходимых выходных параметров.

Контакты микросхемы

Изготовляется в универсальном транзисторном корпусе, позволяющем размещать его на плате или теплоотводе. Наиболее распространённая модель LM317 встречается в корпусе TO-220 с буквой «Т» в конце маркировки. Буква «t» обозначает тип корпуса.

Цоколевка стабилизатора LM317 производится по трем контактам. Если смотреть на устройство спереди, то первый контакт слева (Adj) — это регулируемый вывод, средний (Vout) – выход и последний справа (Vin) — вход.

  • Vin — это вывод, на него подается входное напряжение, которое нужно регулировать. Например, на него может подаваться 12 В, которое устройство будет понижать до 10 В на Vout.
  • Vout — это вывод, на который выводится напряжение. Поверхность радиатора соединена с этим выводом микросхемы.
  • Регулируемый (Adj) — это вывод, который позволяет регулировать выходное напряжение через подстрочный резистор.

Встречается в различных видов корпусов.

Номера контактов разных типов корпусов микросхемы.

Характеристики

Технические параметры LM317 при температуре окружающей среды +25 °C:

физические:

  • корпус TO-220, TO-220FP, TO-3, D2PAK, SOT-23;
  • материал корпуса — пластмасса;

электрические:

  • диапазон от 1.25 до 37 В;
  • сила тока на выходе не более 1.5 А;
  • нестабильность на выходе до 0,1 %;
  • опорное (Vref) от 0,1 до 1,3 В;
  • ток вытекающий из вывода подстройки (Iadj) от 50 до 100 мкА (µA);

внутренняя защита:

  • от короткого замыкания (Internal Short-Circuit Current Limiting);
  • от тепловой перегрузки (Thermal Overload Protection);
  • ограничение по максимальной рассеиваемой мощности (Output Safe-Area Compensation);

Наличие параметра Output Safe-Area Compensatio означает, что в микросхеме есть датчики “теплового ограничения”, которые ограничивают максимальную рассеиваемую мощности, при её превышении она выключится и не пострадает.

Все системы защиты от перегрузок остаются полностью работоспособными даже если вход регулирования отключен.

Схема включения

Зная номера контактов и их назначение можно понизить напряжение, подаваемое на вход микросхемы до необходимого значения. Для этого надо изменить сопротивление R1, подключенного к регулируемому выводу Adj. Давайте посмотрим как это выглядит.

Как видно на схеме включения lm317 к контакту Adj надо подключить два резистора R1 и R2. Они определяют напряжение, которое понижает стабилизатор и выдает на выход. Посмотрим следующую формулу выходного напряжения.

Исходя из формулы видно, что величина Vout зависит от значения резистора R2.Чем больше увеличивается значение сопротивления R2, тем больше будет выходное напряжение.

Пример стабилизации напряжения на LM317

Допустим надо подать на микросхему 12 вольт и отрегулировать его до 5. Исходя из формулы, приведенной выше, для того, чтобы LM317 выдал 5 вольт и выступал в роли регулятора напряжения, значение R2 должно быть 720 Ом.

Соберите указанную выше схему. Затем с помощью мультиметра проверьте выходное напряжение, поместив его щупы на конденсатор емкостью 1 мкФ. Если схема собрана правильно, то на её выходе будет около 5 вольт.

Входной конденсатор С1  можно не использовать, если корпус микросхемы расположен не менее 15 сантиметров от входного сглаживающего фильтра. Выходной конденсатор С2  добавляют для сглаживания переходных процессов.

Теперь замените резистор R2 и установите на его место номинал со значением 1,5 кОм. Теперь на выходе должно быть около 10 В. Это преимущество этих миросхем. Вы можете настроить их на любое напряжение в пределах диапазона, указанного в его характеристиках.

Принцип работы

Соберем простой стабилизатор напряжения используя LM317 согласно схеме.

Подключим на вход Vin источник постоянного питания. Как уже было написано ранее, к этим контактам надо подать входное напряжение, которое микросхема затем понизит в зависимости от нагрузки. Оно должно быть больше, чем на выходе.

Допустим используя эту схему надо получить 5 В нагрузке. Следовательно, на вход Vin надо подать больше чем 5 вольт. Как правило, если микросхема LM317, не является регулятором с малым падением надо, чтобы входное напряжение примерно на 2 вольта было выше выходного. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.

Регулятор с малым падением напряжения – устройство с низким падением на переходе, примерно от 1 до 1,5 вольт. В качестве регулирующего элемента обычно используется одинарный npn-транзистор.

Контакт Adj позволяет отрегулировать напряжение на выходе до уровня, который мы хотим.Рассчитаем, какое значение сопротивления R2 даст на выходе устройства 5 вольт. Используя формулу для выходного напряжения можно узнать значение сопротивления R2.

Так как сопротивление R1 равно 240 Ом, а выходное напряжение равно 5 В, то R2 согласно формуле будет равно 720 Ом.  Таким образом, при значении R2 =720 Ом, LM317 будет выдавать 5 В, при подаче на её вход более 5 Вольт.

Драйвер тока

Драйвер тока (LED Driver) поддерживает ток и напряжение в цепи нагрузки в независимости от поданного на него постоянного питания. Известно, что светодиод является полупроводниковым прибором, который следует запитать током, указанным в характеристиках светодиода.

Используя схему стабилизации как показано в DataSheet  можно собрать на LM317 простую схему драйвера тока.

Для ее работы зная потребляемый светодиодом ток, необходимо подобрать сопротивление подстроечного резистора R1. У маломощных светодиодов ток потребления составляет порядка 20 мА или 0,02 А. Для подбора необходимого сопротивления используют формулу, где Iout это ток на выходе микросхемы, необходимый для питания светодиодов.

Используя формулу, получаем значение номинала резистора с сопротивлением 62.5 Ома. Для избежания перегрева микросхемы подбирают необходимую мощности резистора по формуле.

Собрав схему и подав питание, получают простейший драйвер стабилизации тока для светодиодов.  Светодиод будет включаться, с требуемой яркостью, которая не будет зависеть от поданного постоянного питания на вход микросхемы.

Номинал необходимого резистора R1, можно подобрать, используя обычный подстроечный проволочный резистор на сопротивление 0.5 кОм. Для этого сначала проверяют его сопротивление между среднем и любым из крайних выводов. С помощью мультиметра, вращая регулирующий стержень,  добиваемся значения сопротивления 500 Ом, чтобы не сжечь подключенный светодиод при включении.

Затем подключают в схему со светодиодом. Чтобы  выбрать подходящий номинал резистора, после подачи питания изменяют сопротивление подстроечного резистора до требуемого тока светодиода.

Онлайн-калькулятор

Для расчета параметров радиоэлементов в схемах с LM317 в сети интернет существует множество онлайн-калькуляторов:

  • для расчета резистора R2, при известном выходном напряжении и сопротивлении резистора R1;
  • для вычисления напряжения на выходе стабилизатора, при известном сопротивлении двух резисторов (R1 и R2);
  • для расчета сопротивления и мощности резистора, при известном значении силы тока на выходе микросхемы и др.

Как проверить lm317 мультиметром ?

Мультиметром микросхемы проверить нельзя, так как это не транзистор. Что-то протестировать между контактами конечно можно, но это не гарантирует исправность микросхемы, так как она содержит большое количество различных радиоэлементов (транзисторов, резисторов и др.

), которые не соединены с выводами напрямую и не «прозваниваются». Самым эффективный способ, это собрать простой стенд используя макетную плату для проверки и запитать все от батарейки, . Стенд должен представлять собой простейший стабилизатор (пару конденсаторов и резисторов).

Зарубежные и российские аналоги

Чем можно заменить lm317 ? Полными аналогами микросхемы являются GL317, SG317, UPC317, ECG1900.  Очень известным отечественным аналогом lm317t c фиксированным напряжением является микросхема KP142ЕН12. Если нужен регулируемый линейный стабилизатор, то подойдет КРЕН12А (можно и Б).

Безопасность при эксплуатации

Максимальное напряжение между входом и выходом не должно превышать 40 В. Мощность рассеивания не более 20 Вт. Температура пайки не должна превышать 260 °С, при соблюдении расстоянии от корпуса микросхемы более 1,6 мм и времени нагревания до 10 секунд. Температура хранения устройства должна находится в пределах от -65 до + 150 °С, рабочая температура не более + 150 °С.

Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Микросхема хорошо защищена от тепловой перегрузки и короткого замыкания контактов. Однако не стоит превышать допустимые параметры при эксплуатации, для избежания выхода её из строя и достижения максимально надежной работы.

Производители

LM317t выпускают многие именитые производители, ниже представим их вместе с DataSheet:

  • Texas Instruments Incorporated;
  • ON Semiconductor;
  • ST Microelectronics.

Источник: //shematok.ru/stabilizatory/lm317t

Стабилизатор тока на LM317 для светодиодов

Применение lm317t. Стабилизаторы тока на lm317, lm338, lm350 и их применение для светодиодов. Схемы включения lm317. Плюсы и минусы

Рассмотрим самый простой вариант изготовления светодиодного драйвера своими руками с минимальными затратами времени.

Для расчёта стабилизатора тока на LM317 для светодиодов используем калькулятор, которому необходимо указать требуемую силу тока для LED диодов.

Предварительно составьте схему включения светодиодов, учитывая максимальную мощность микросхемы  и блока питания для светодиодов. Заранее поищите систему охлаждения для всей конструкции.

  • 1. Схема подключения
  • 2. Пример расчётов и сборки
  • 3. Основные электрические характеристики
  • 4. Импульсные драйверы

Схема подключения

О различных способах питания светодиодов от 12 и 220 вольт прочитайте в статье «Как подключить светодиод«.

Для изготовления стабилизатора тока на LM317 с возможностью регулирования, вместо постоянного резистора поставить мощное переменное сопротивление. Номинал переменного сопротивления можно вычислить, указав калькулятору границы регулирования.

Сопротивление может быть  от 1 до 110Ом, это соответствует максимальному  и минимальному. Но рекомендую  отказаться от регулировки Ампер в нагрузке переменным сопротивлением. Правильно реализовать будет сложно и лишком большой будет нагрев.

Мощность постоянного резистора для стабилизатора тока по рассеиванию тепла должна быть с запасом, вычисляется по формуле:

  • I² * R = Pвт
    сила тока в квадрате умноженное на сопротивление резистора.

В качестве блока питания можно использовать трансформаторный или импульсный источник напряжения с полярным напряжением. В качестве выпрямителя лучше использовать классический диодный мост, после которого установлен конденсатор большой емкости.

Регулятор тока на LM317 LM317T работает по линейному принципу, поэтому может достаточно сильно нагреваться из-за невысокого КПД. Наличие приличного радиатора обязательно. Если контроль нагрева показал низкую температуру нагрева, то его можно уменьшить.

Если количество Ампер требуется более 1,5А, то в стандартную схему надо добавить пару элементов. Можно получить до 10А, установив мощный транзистор KT825A  и резистор на 10ом.

Этот вариант подходит для тех, у кого под рукой нет LM338 или LM350.

Вариант стабилизатора тока на 3А сделан на транзисторе КТ818, Амперы в нагрузке регулируются и рассчитывается во всех схемах одинаково на калькуляторе.

Пример расчётов и сборки

Если собрать очень хочется а подходящего блока питания нет, то есть несколько вариантов это решить. Выменять у соседа или подключить схему к батарее на 9V типа Крона. На фото видно всю схему в сборе со светодиодом.

Если для светодиодов необходим 1А, то указываем это в калькуляторе и получаем результат 1,25ом. Резистора точно такого номинала нет, поэтому устанавливаем подходящий с номиналом в сторону увеличения Ом. Второй вариант, это использовать параллельное и последовательное подключение резисторов. Правильно подключив несколько сопротивлений получим необходимое количество Ом.

Ваши стабилизаторы тока на LM317 будут похожи на ниже представленные изделия.

А если вы страдаете полным светодиодным фанатизмом, то будет выглядеть так.

Основные электрические характеристики

Настоятельно рекомендую не эксплуатировать  LM317 на  предельных режимах, китайские микросхемы не имеют запаса прочности. Конечно есть встроенная защита от короткого замыкания и перегрева, но не надейтесь что она  будет срабатывать каждый раз.

В результате  перегрузки может выгореть не только ЛМ317 но и то что к ней подключено, а это уже совсем другой ущерб.

Основные параметры LM317:

  1. входное до 40В;
  2. нагрузка до 1,5А;
  3. нагрев до 125°;
  4. регулятор КЗ.

Если нагрузки в 1А вам будет недостаточно, то можно применить более мощные модели стабилизаторов LM338 и LM350, 5А и 3А соответственно.

Внешний вид LM338

Для улучшения теплоотдачи увеличен корпус TO-3, такой часто встречается у советских транзисторов. Но выпускается и в малом корпусе TO-220, рассчитанном на меньшие нагрузки.

Параметры LM338:

  1. входное до 32V;
  2. нагрузка до 5А;
  3. защита от перегрева и короткого замыкания.

Расположение контактов на LM338

WikiMedForum.Ru
Добавить комментарий