Различные способы задания плоскости в пространстве. Способы задания плоскости на эпюре. Главные линии плоскости

Лекция 6. ПЛОСКОСТЬ НА ЭПЮРЕ МОНЖА

Различные способы задания плоскости в пространстве. Способы задания плоскости на эпюре. Главные линии плоскости

6.1. Способы задание плоскости на эпюре.

6.2. Характеристика плоскостей.

6.3. Определение следов плоскости.

6.4.Принадлежность прямой плоскости.

6.5. Принадлежность точки плоскости.

6.6. Контрольные вопросы.

6.1. Способы задание плоскости на эпюре

Плоскость на эпюре может быть задана шестью способами: тремя точками, не лежащими на одной прямой; прямой и точкой, не лежащей на прямой; двумя пересекающимися прямыми; двумя параллельными прямыми; плоской фигурой; следами.

На рис. 47 плоскость задана: тремя точками А, В и С (рис. 47а); точкой А и прямой l (рис. 47б); двумя пересекающимися прямыми l и k (рис.

47в); двумя параллельными прямыми l и k (рис. 47г); плоской фигурой – ∆АВС (рис. 47г). Эти способы задания плоскости уже знакомы еще со школьной программы.

Рассмотрим более подробней способ задания плоскости ее следами (рис. 48).

Рис. 47

Рис. 48

Линия пересечения плоскости a с плоскостью проекций называется следом данной плоскости. На рис. 48 обозначено:

– a∩π1 = a1 – горизонтальный след плоскости a, a1Ì π1;

– a∩π2= a2 – фронтальный след плоскости a, a2Ì π2;

– aÌπ3= a3 – профильный след плоскости a, a3Ì π3.

Точки пересечения плоскости a с осями проекций называются точками схода следов: a∩0Х=aх, a∩0Y=ay, a∩0Z=az.

Следует помнить, что при решении задач по начертательной геометрии можно переходить от одного способа задания плоскости к другому т.к. они взаимозаменяемы.

Характеристика плоскостей

Все плоскости пространства подразделяются на плоскости общего и частного положений.

Плоскости общего положения. Плоскости не перпендикулярные ни к одной из плоскостей проекций называются плоскостями общего положения. Примеры изображения таких плоскостей приведены на рис. 47 и 48.

Плоскости частного положения. Плоскости перпендикулярные и парал­лельные плоскостям проекций относятся к плоскостям частного положения.

Проецирующие плоскости. Плоскости перпендикулярные к одной из плоскостей проекций называются проецирующими плоскостями. Характерным признаком таких плоскостей на эпюре является то что одна из ее проекций вырождается в прямую.

Плоскость перпендикулярная плоскости π1 называются горизонтально-проецирующей плоскостью (рис. 49). Характерным признаком такой плоскости является то, что ее горизонтальная проекция вырождается в прямую. Кроме того, следует отметить, что угол между вырожденной проекцией плоскости и осью 0Х есть угол наклона проецирующей плоскости к фронтальной плоскости проекций (β).

Рис. 49 Рис. 50

Плоскость перпендикулярная плоскости π2 называются фронтально-проецирующей плоскостью (рис. 50). Характерным признаком такой плоскости является то, что ее фронтальная проекция вырождается в прямую. Кроме того, следует отметить, что угол между вырожденной проекцией плоскости и осью 0Х есть угол наклона проецирующей плоскости к горизонтальной плоскости проекций (α).

Плоскость перпендикулярная плоскости π3 называются профильно-проецирующей плоскостью (рис. 51). Характерным признаком такой плоскости является то, что ее профильная проекция вырождается в прямую.

Кроме того, следует отметить, что углы между вырожденной проекцией плоскости и осями и 0Z есть углы наклона проецирующей плоскости к горизонтальной и фронтальной плоскостям проекций соответственно (α и β).

Рис. 51

Плоскости уровней. Плоскости параллельные плоскостям проекций называются плоскостями уровней (рис. 52, 53, 54).

Плоскость параллельная плоскости π1 называются горизонтальной плоскостью уровня (рис. 52). Характерным признаком такой плоскости является то, что ее фронтальная проекция вырождается в прямую параллельную оси 0Х. Кроме того, следует отметить, что геометрические фигуры, принадлежащие такой плоскостям на горизонтальную плоскость проекций, проецируются в натуральную величину.

Рис. 52 Рис. 53

Рис. 54

Плоскость параллельная плоскости π2 называются фронтальной плоскостью уровня (рис. 53). Характерным признаком такой плоскостей является то, что ее горизонтальная проекция вырождается в прямую параллельную оси 0Х. Кроме того, следует отметить, что геометрические фигуры, принадлежащие такой плоскости на фронтальную плоскость проекций, проецируются в натуральную величину.

Плоскость параллельная плоскости π3 называются профильной плоскостью уровня (рис. 54).

Характерным признаком такой плоскостей является то, что ее горизонтальная и фронтальная проекции вырождаются в прямые перпендикулярные к оси ОХ.

Кроме того, следует отметить, что геометрические фигуры, принадлежащие такой плоскости на профильную плоскость проекций, проецируются в натуральную величину.

Источник: https://cyberpedia.su/8xf87e.html

Плоскость в пространстве – необходимые сведения, способы задания плоскости, плоскости в пространстве

Различные способы задания плоскости в пространстве. Способы задания плоскости на эпюре. Главные линии плоскости

Плоскость – это одна из наиболее важных фигур в планиметрии, поэтому нужно хорошо понимать, что она из себя представляет. В рамках этого материала мы сформулируем само понятие плоскости, покажем, как ее обозначают на письме, и введем необходимые обозначения.

Затем мы рассмотрим это понятие в сравнении с точкой, прямой или другой плоскостью и разберем варианты их взаимного расположения. Все определения будут проиллюстрированы графически, а нужные аксиомы сформулированы отдельно.

В последнем пункте мы укажем, как правильно задать плоскость в пространстве несколькими способами.

Понятие плоскости и ее обозначения

Плоскость представляет собой одну из простейших фигур в геометрии наравне с прямой и точкой. Ранее мы уже объясняли, что точка и прямая размещаются на плоскости. Если эту плоскость разместить в трехмерном пространстве, то мы получим точки и прямые в пространстве.

В жизни представление о том, что такое плоскость, нам могут дать такие объекты, как поверхность пола, стола или стены. Но нужно учитывать, что в жизни их размеры ограничены, а здесь понятие плоскости связано с бесконечностью.

Прямые и точки, размещенные в пространстве, мы будем обозначать аналогично размещенным на плоскости – с помощью строчных и прописных латинских букв (B, A, d, q и др.) Если в условиях задачи у нас есть две точки, которые расположены на прямой, то можно выбрать такие обозначения, которые будут соответствовать друг другу, например, прямая DB и точки D и B.

Чтобы обозначить плоскость на письме, традиционно используются маленькие греческие буквы, например, α, γ или π.

Если нам нужно графическое отображение плоскости, то обычно для этого используется замкнутое пространство произвольной формы или параллелограмм.

Плоскость принято рассматривать вместе с прямыми, точками, другими плоскостями. Задачи с этим понятием обычно содержат некоторые варианты их расположения друг относительно друга. Рассмотрим отдельные случаи.

Как могут располагаться плоскость и точка друг относительно друга

Первый способ взаимного расположения заключается в том, что точка расположена на плоскости, т.е. принадлежит ей. Можно сформулировать аксиому:

Определение 1

В любой плоскости есть точки.

Такой вариант расположения также называется прохождением плоскости через точку. Чтобы обозначить это на письме, используется символ ∈. Так, если нам нужно записать в буквенном виде, что через точку A проходит некая плоскость π, то мы пишем: A∈π.

Если некая плоскость задана в пространстве, то число точек, принадлежащих ей, является бесконечным. А какого минимального количества точек будет достаточно для определения плоскости? Ответом на этот вопрос будет следующая аксиома.

Определение 2

Через три точки, которые не расположены на одной прямой, проходит единственная плоскость.

Зная это правило, можно ввести новое обозначение плоскости. Вместо маленькой греческой буквы мы можем использовать названия точек, лежащих в ней, например, плоскость АВС.

Другой способ взаимного расположения точки и плоскости можно выразить с помощью третьей аксиомы:

Определение 3

Можно выделить как минимум 4 точки, которые не будут находиться в одной плоскости.

Выше мы уже отмечали, что для обозначения плоскости в пространстве будет достаточно трех точек, а четвертая может находиться как в ней, так и вне ее. Если нужно обозначить отсутствие принадлежности точки к заданной плоскости на письме, то используется знак ∉. Запись вида A∉π правильно читается как «точка A не принадлежит плоскости π»

Графически последнюю аксиому можно представить так:

Варианты взаимного расположения прямой и плоскости

Самый простой вариант – прямая находится в плоскости. Тогда в ней будут расположены как минимум две точки этой прямой. Сформулируем аксиому:

Определение 4

Если хотя бы две точки заданной прямой находятся в некоторой плоскости, это значит, что все точки этой прямой расположены в данной плоскости.

Чтобы записать принадлежность прямой некой плоскости, используем тот же символ, что и для точки. Если мы напишем «a∈π», то это будет означать, что у нас есть прямая a, которая расположена в плоскости π. Изобразим это на рисунке:

Второй вариант взаимного расположения – это когда прямая пересекает плоскость. В таком случае у них будет всего одна общая точка – точка пересечения.

Для записи такого расположения в буквенном виде используем символ ∩. Например, выражение a∩π=M читается как «прямая a пересекает плоскость π в некоторой точке M».

Если у нас есть точка пересечения, значит, у нас есть и угол, под которым прямая пересекает плоскость.

Графически этот вариант расположения выглядит так:

Если у нас есть две прямые, одна из которых лежит в плоскости, а другая ее пересекает, то они являются перпендикулярными друг другу. На письме это обозначается символом ⊥. Особенности такой позиции мы рассмотрим в отдельной статье. На рисунке это расположение будет выглядеть следующим образом:

Если мы решаем задачу, в которой есть плоскость, нам необходимо знать, что из себя представляет нормальный вектор плоскости.

Определение 5

Нормальный вектор плоскости – это такой вектор, который лежит на перпендикулярной прямой по отношению к плоскости и не равен при этом нулю.

Примеры нормальных векторов плоскости показаны на рисунке:

Третий случай взаимного расположения прямой и плоскости – это их параллельность. В таком случае ни одной общей точки у них нет. Для указания таких отношений на письме используется символ ∥. Если у нас есть запись вида a∥π, то ее следует читать так: «прямая a является параллельной плоскости ∥». Подробнее этот случай мы разберем в статье про параллельные плоскости и прямые.

Если прямая расположена внутри плоскости, то она делит ее на две равные или неравные части (полуплоскости). Тогда такая прямая будет называться границей полуплоскостей.

Любые 2 точки, расположенные в одной полуплоскости, лежат по одной сторону от границы, а две точки, принадлежащие разным полуплоскостям, лежат по разную сторону от границы.

Варианты расположения двух плоскостей друг относительно друга

1. Наиболее простой вариант – две плоскости совпадают друг с другом. Тогда они будут иметь минимум три общие точки.

2. Одна плоскость может пересекать другую. При этом образуется прямая. Выведем аксиому:

Определение 6

Если две плоскости пересекаются, то между ними образуется общая прямая, на которой лежат все возможные точки пересечения.

На графике это будет выглядеть так:

В таком случае между плоскостями образуется угол. Если он будет равен 90 градусам, то плоскости будут перпендикулярны друг другу.

3. Две плоскости могут быть параллельными друг другу, то есть не иметь ни одной точки пересечения.

Если у нас есть не две, а три и больше пересекающихся плоскостей, то такую комбинацию принято называть пучком или связкой плоскостей. Подробнее об этом мы напишем в отдельном материале.

Как задать плоскость в пространстве

В этом пункте мы посмотрим, какие существуют способы задания плоскости в пространстве.

1. Первый способ основан на одной из аксиом: единственная плоскость проходит через 3 точки, не лежащие на одной прямой. Следовательно, мы можем задать плоскость, просто указав три таких точки.

Если у нас есть прямоугольная система координат в трехмерном пространстве, в которой задана плоскость с помощью этого способа, то мы можем составить уравнение этой плоскости (подробнее см, соответствующую статью). Изобразим данный способ на рисунке:

2. Второй способ – задание плоскости с помощью прямой и точки, не лежащей на этой прямой. Это следует из аксиомы о плоскости, проходящей через 3 точки. См. рисунок:

3. Третий способ заключается в задании плоскости, которая проходит через две пересекающиеся прямые (как мы помним, в таком случае тоже есть только одна плоскость.) Проиллюстрируем способ так:

4. Четвертый способ основан на параллельных прямых. Вспомним, какие прямые называются параллельными: они должны лежать в одной плоскости и не иметь ни одной точки пересечения.

Получается, что если мы укажем в пространстве две такие прямые, то мы тем самым сможем определить для них ту самую единственную плоскость.

Если у нас есть прямоугольная система координат в пространстве, в которой уже задана плоскость этим способом, то мы можем вывести уравнение такой плоскости.

На рисунке этот способ будет выглядеть так:

Если мы вспомним, что такое признак параллельности, то сможем вывести еще один способ задания плоскости:

Определение 7

Если у нас есть две пересекающиеся прямые, которые лежат в некоторой плоскости, которые параллельны двум прямым в другой плоскости, то и сами эти плоскости будут параллельны.

Таким образом, если мы зададим точку, то мы сможем задать плоскость, которая проходит через нее, и ту плоскость, которой она будет параллельна. В таком случае мы тоже можем вывести уравнение плоскости (об этом у нас есть отдельный материал).

Вспомним одну теорему, изученную в рамках курса по геометрии:

Определение 8

Через определенную точку пространства может проходить только одна плоскость, которая будет параллельна заданной прямой.

Это значит, что можно задать плоскость путем указания конкретной точки, через которую она будет проходить, и прямой, которая будет перпендикулярна по отношению к ней. Если плоскость задана этим способом в прямоугольной системе координат, то мы можем составить уравнение плоскости для нее.

Также мы можем указать не прямую, а нормальный вектор плоскости. Тогда можно будет сформулировать общее уравнение.

Мы рассмотрели основные способы, с помощью которых можно задать плоскость в пространстве.

Источник: https://Zaochnik.com/spravochnik/matematika/prjamaja-ploskost/ploskost-v-prostranstve/

Плоскость в пространстве – необходимые сведения

Различные способы задания плоскости в пространстве. Способы задания плоскости на эпюре. Главные линии плоскости
Прямая, плоскость, их уравнения

В планиметрии плоскость является одной из основных фигур, поэтому, очень важно иметь ясное представление о ней. Эта статья создана с целью раскрытия этой темы. Сначала дано понятие плоскости, ее графическое представление и показаны обозначения плоскостей.

Далее плоскость рассматривается вместе с точкой, прямой или другой плоскостью, при этом возникают варианты из взаимного расположения в пространстве. Во втором и третьем и четвертом пункте статьи как раз разобраны все варианты взаимного расположения двух плоскостей, прямой и плоскости, а также точки и плоскости, приведены основные аксиомы и графические иллюстрации.

В заключении даны основные способы задания плоскости в пространстве.

Плоскость – основные понятия, обозначения и изображение

Простейшими и основными геометрическими фигурами в трехмерном пространстве являются точка, прямая и плоскость. Мы уже имеем представление о точке и прямой на плоскости.

Если поместить плоскость, на которой изображены точки и прямые, в трехмерное пространство, то мы получим точки и прямые в пространстве. Представление о плоскости в пространстве позволяет получить, к примеру, поверхность стола или стены.

Однако, стол или стена имеют конечные размеры, а плоскость простирается за их границы в бесконечность.

Точки и прямые в пространстве обозначаются также как и на плоскости – большими и маленькими латинскими буквами соответственно. Например, точки А и Q, прямые а и d.

Если заданы две точки, лежащие на прямой, то прямую можно обозначить двумя буквами, соответствующими этим точкам. К примеру, прямая АВ или ВА проходит через точки А и В.

Плоскости принято обозначать маленькими греческими буквами, например, плоскости , или .

При решении задач возникает необходимость изображать плоскости на чертеже. Плоскость обычно изображают в виде параллелограмма или произвольной простой замкнутой области.

Плоскость обычно рассматривается вместе с точками, прямыми или другими плоскостями, при этом возникают различные варианты их взаимного расположения. Переходим к их описанию.

К началу страницы

Начнем с аксиомы: в каждой плоскости имеются точки. Из нее следует первый вариант взаимного расположения плоскости и точки – точка может принадлежать плоскости. Другими словами, плоскость может проходить через точку. Для обозначения принадлежности какой-либо точки какой-либо плоскости используют символ «». Например, если плоскость проходит через точку А, то можно кратко записать .

Следует понимать, что на заданной плоскости в пространстве имеется бесконечно много точек.

Следующая аксиома показывает, сколько точек в пространстве необходимо отметить, чтобы они определяли конкретную плоскость: через три точки, не лежащие на одной прямой, проходит плоскость, причем только одна.

Если известны три точки, лежащие в плоскости, то плоскость можно обозначить тремя буквами, соответствующими этим точкам. Например, если плоскость проходит через точки А, В и С, то ее можно обозначить АВС.

Сформулируем еще одну аксиому, которая дает второй вариант взаимного расположения плоскости и точки: имеются по крайней мере четыре точки, не лежащие в одной плоскости. Итак, точка пространства может не принадлежать плоскости.

Действительно, в силу предыдущей аксиомы через три точки пространства проходит плоскость, а четвертая точка может как лежать на этой плоскости, так и не лежать.

При краткой записи используют символ «», который равносилен фразе «не принадлежит».

К примеру, если точка А не лежит в плоскости , то используют краткую запись .

К началу страницы

Во-первых, прямая может лежать в плоскости. В этом случае, в плоскости лежат хотя бы две точки этой прямой. Это устанавливается аксиомой: если две точки прямой лежат в плоскости, то все точки этой прямой лежат в плоскости. Для краткой записи принадлежности некоторой прямой данной плоскости пользуются символом «». Например, запись означает, что прямая а лежит в плоскости .

Во-вторых, прямая может пересекать плоскость. При этом прямая и плоскость имеют одну единственную общую точку, которую называют точкой пересечения прямой и плоскости. При краткой записи пересечение обозначаю символом «». К примеру, запись означает, что прямая а пересекает плоскость в точке М. При пересечении плоскости некоторой прямой возникает понятие угла между прямой и плоскостью.

Отдельно стоит остановиться на прямой, которая пересекает плоскость и перпендикулярна любой прямой, лежащей в этой плоскости. Такую прямую называют перпендикулярной к плоскости. Для краткой записи перпендикулярности используют симовл «». Для более глубокого изучения материала можете обратиться к статье перпендикулярность прямой и плоскости.

Особую значимость при решении задач, связанных с плоскостью, имеет так называемый нормальный вектор плоскости. Нормальным вектором плоскости является любой ненулевой вектор, лежащий на прямой, перпендикулярной этой плоскости.

В-третьих, прямая может быть параллельна плоскости, то есть, не иметь в ней общих точек. При краткой записи параллельности используют символ «». Например, если прямая а параллельна плоскости , то можно записать . Рекомендуем подробнее изучить этот случай, обратившись к статье параллельность прямой и плоскости.

Следует сказать, что прямая, лежащая в плоскости, делит эту плоскость на две полуплоскости. Прямая в этом случае называется границей полуплоскостей. Любые две точки одной полуплоскости лежат по одну сторону от прямой, а две точки разных полуплоскостей лежат по разные стороны от граничной прямой.

К началу страницы

Две плоскости в пространстве могут совпадать. В этом случае они имеют, по крайней мере, три общие точки.

Две плоскости в пространстве могут пересекаться. Пересечением двух плоскостей является прямая линия, что устанавливается аксиомой: если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

В этом случае возникает понятие угла между пересекающимися плоскостями. Отдельный интерес представляет случай, когда угол между плоскостями равен девяноста градусам. Такие плоскости называют перпендикулярными. О них мы поговорили в статье перпендикулярность плоскостей.

Наконец, две плоскости в пространстве могут быть параллельными, то есть, не иметь общих точек. Рекомендуем ознакомиться со статьей параллельность плоскостей, чтобы получить полное представление об этом варианте взаимного расположения плоскостей.

Также интересны случаи, когда несколько плоскостей пересекаются по одной прямой и несколько плоскостей пересекаются в одной точке. О таком взаимном расположении плоскостей смотрите статьи пучок плоскостей и связка плоскостей.

К началу страницы

Сейчас мы перечислим основные способы задания конкретной плоскости в пространстве.

Во-первых, плоскость можно задать, зафиксировав три не лежащие на одной прямой точки пространства. Этот способ основан на аксиоме: через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость с помощью указания координат трех ее различных точек, не лежащих на одной прямой, то мы можем написать уравнение плоскости, проходящей через три заданные точки.

Два следующих способа задания плоскости являются следствием из предыдущего. Они основаны на следствиях из аксиомы о плоскости, проходящей через три точки:

Четвертый способ задания плоскости в пространстве основан на определении параллельных прямых. Напомним, что две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Таким образом, указав две параллельные прямые в пространстве, мы определим единственную плоскость, в которой эти прямые лежат.

Если в трехмерном пространстве относительно прямоугольной системы координат задана плоскость указанным способом, то мы можем составить уравнение плоскости, проходящей через две параллельные прямые.

Признак параллельности двух плоскостей дает нам еще один способ задания плоскости. Вспомним формулировку этого признака: если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то такие плоскости параллельны. Следовательно, мы можем задать конкретную плоскость, если укажем точку, через которую она проходит и плоскость, которой она параллельна.

Рекомендуем ознакомиться также со статьей уравнение плоскости, проходящей через заданную точку параллельно заданной плоскости.

В курсе средней школы на уроках геометрии доказывается следующая теорема: через фиксированную точку пространства проходит единственная плоскость, перпендикулярная к данной прямой. Таким образом, мы можем задать плоскость, если укажем точку, через которую она проходит, и прямую, перпендикулярную к ней.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость указанным способом, то можно составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Вместо прямой, перпендикулярной к плоскости, можно указать один из нормальных векторов этой плоскости. В этом случае есть возможность написать общее уравнение плоскости.

На этом завершаем обзор основных способов, с помощью которых определяется конкретная плоскость пространства.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Некогда разбираться?

Закажите решение

К началу страницы

Источник: http://www.cleverstudents.ru/line_and_plane/plane_in_the_space.html

WikiMedForum.Ru
Добавить комментарий