S боковой поверхности конуса. Как найти образующую конуса

Площадь поверхности конуса

S боковой поверхности конуса. Как найти образующую конуса

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Соединим произвольную точку A этого круга с точкой S отрезком AS. Если точка А будет описывать круг с радиусом R, то отрезки AS будут заполнять некоторое тело.

Это тело называют круговым конусом.

Границей конуса является круг радиуса R и боковая поверхность конуса.
Боковую поверхность описывает отрезок AS , когда точка A описывает круг.
Точка S является вершиной конуса.

Множество отрезков AS, соединяющих вершину с окружностью основания являются направляющими конуса.Если перпендикуляр, опущенный из точки S, совпадает с центром основания, то конус называется прямым.Очень часто говорят, что прямой конус образуется в результате вращения прямоугольного треугольника вокруг оси, содержащий его катет.

На данном рисунке прямой конус получился в результате вращения прямоугольного треугольника AOS вокруг катета SO. Тогда говорят, что

  • Катет SO –это высота конуса;
  • Гипотенуза AS –образующая конуса;
  • Катет AO – радиус конуса.

Площадь боковой поверхности конуса через его радиус и направляющую

Пусть дан конус с радиусом R и образующей L
AS=L, AO=R

Разрежем конус по образующей L и развернем его боковую поверхность.
В результате получим криволинейный треугольник ASA` , где AS=L, A`S=L.

Дуга AA` -это вытянутая окружность основания конуса с радиусом R. Следовательно, длина дуги AA` будет равна 2πR
Площадь боковой поверхности будет равна площади сектора круга с радиусом R.

Если угол α – радиальная мера угла, то: где α=∠{ASA`}

Чтобы найти угол ∠{ASA`} воспользуемся формулой длины дуги, которая стягивает данный угол:

Но с другой стороны:
Приравняем правые части равенств. Имеем:
Выразим α:
Подставим полученное выражение в формулу площади сектора: Следовательно, боковая поверхность конуса равна произведению числа π на радиус конуса и его образующую.Формула боковой поверхности конуса будет иметь следующий вид:

Пример расчета площади боковой поверхности конуса, если известны его радиус и направляющаяНайти площадь боковой поверхности конуса с радиусом равным 3 см, образованным направляющей равной 7 см

По условию задачи L = 5см, R=3см

Формула боковой поверхности конуса:

Подставив в формулу значения из условия задачи, имеем:

Очень часто в задачах на вычисление площади боковой поверхности конуса известна высота конуса вместо его направляющей.

Так как конус прямой, то треугольник AOS – прямоугольный, где AO и OS – катеты, а AS –гипотенуза.

Воспользовавшись теоремой Пифагора, получаем:
Отсюда:
Но
Тогда:
Подставим данное выражение в формулу площади боковой поверхности конуса:
Боковая поверхность конуса равна произведению числа на радиус конуса и корень квадратный из суммы квадратов радиуса и высоты конуса

Пример расчета площади боковой поверхности конуса, если известны его радиус и высота.Найти площадь боковой поверхности конуса с радиусом равным 1 см и высотой, равной 5 см

По условию задачи Н = 5см, R=1см

Формула боковой поверхности конуса:

Подставив в формулу значения из условия задачи, имеем:

Полная поверхность конуса

Полная поверхность конуса – это сумма площади его боковой поверхности и площади основания конуса:

Основанием конуса является круг с радиусом R. Его площадь равна произведению числа π на квадрат его радиуса:
Площадь боковой поверхности вычисляется по формуле: или
Тогда площадь полной поверхности конуса равна:
или Таким образом, площадь полной поверхности конуса равна произведению числа {pi} на радиус конуса и сумму направляющей и радиуса.

Формула имеет следующий вид:

Площадь полной поверхности конуса равна произведению числа π на радиус конуса и сумму корня квадратного из суммы квадратов радиуса и высоты конуса и радиуса конуса.

Формула имеет следующий вид:

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом.

Формула площади сектора кольца, выраженная через внешний и внутренний радиусы

Пусть дана окружность радиуса R и окружности радиуса r. Причем R>r. Совместим центры этих окружностей. Возьмем на окружности с большим радиусом две произвольные точки. Проведем к ним радиусы, которые образуют угол α. Эти радиусы отсекут от окружностей некоторые дуги.

Фигура, заключенная между этими дугами окружностей и радиусами, проведенными к концам этих дуг, и будет сектор кольца, у которого R является внешним радиусом, r -внутренним радиусом.Тогда площадь этой фигуры будет равна разницы между площадью сектора круга с большим радиусом и площадью сектора круга с меньшим радиусом.

Площадь сектора круга с радиусом r выражается формулой:

где l–длина дуги равная Подставим выражение длины дуги в формулу площади сектора. Получим:
Площадь круга с радиусом R выражается формулой:
где L–длина дуги равная Подставим выражение длины дуги в формулу площади сектора.

Получим:

Тогда площадь кольца будет равна:

Таким образом, площадь сектора кольца равна произведению площади единичного сектора кольца, то есть сектору, соответствующему центральному углу с мерой равной единице на меру центрального угла, соответствующего данному сектору.

Формула имеет вид:

Пример расчета площади сектора кольца, если известны его радиусы.Найдите площадь сектора кольца, образованного углом 30° , если его внешний радиус равен 14, а внутренний – 8.Площадь кольца вычисляется по формуле:

Подставив значения из условия задачи, имеем:

Page 3

Чтобы найти объем конуса необходимо произвести дополнительные построения.

Построим вписанную в конус правильную n-угольную пирамиду и опишем вокруг данного конуса правильную n-угольную пирамиду.Вписанная пирамида содержится в конусе. Из этого следует, что ее объем не больше объема конуса.

Описанная пирамида содержит конус, а это значит, что ее объем не меньше объема конуса.

Впишем в основание вписанной пирамиды окружность.
Если радиус вписанного правильного n-угольника равен R, то радиус вписанной в него окружности будет равен:

Объем вписанной пирамиды вычисляется по формуле:

где S – основание пирамиды.
Площадь данного круга вычисляется по формуле: Площадь основания вписанной пирамиды не меньше площади круга, содержащегося в ней

Поэтому утверждение, что объем вписанной в конус пирамиды не меньше верно.

А следовательно, мы может утверждать, что объем конуса, содержащий эту пирамиду будет больше или равен
V≥

Теперь опишем окружность вокруг основания описанной вокруг конуса пирамиды.
Радиус этой окружности будет равен:

Площадь данного круга вычисляется по формуле:
Основание описанной пирамиды содержится в круге описанном вокруг него. Поэтому площадь основания пирамиды не больше
Поэтому утверждение,что объем описанной пирамиды не больше верно.

А следовательно, мы может утверждать, что объем конуса, содержащий в эту пирамиду будет меньше или равен

Два полученных неравенства равны при любом n.

Если то
Тогда из первого неравенства следует, что V≥
Из второго неравенства

Отсюда следует, что

Объем конуса равен одной трети произведения радиуса на высоту.

Пример расчета объема конусаНайти объем конуса, если его радиус основания равен 3 см, а образующая 5 см.

Объем конуса вычисляется по формуле:

Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и радиус основания образуют прямоугольный треугольник.

Воспользовавшись теоремой Пифагора имеем:

Отсюда:

Подставим значение радиуса и высоты в формулу объема конуса.Имеем:

Page 4

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса.

Дополним данный усеченный конус до полного . Пусть его высота будет x . Если высота усеченного конуса – h , то высота отсеченного конуса будет – x-h .

Высота усеченного конуса будет равна разности объема полного конуса с радиусом R1и высотой x и объема полного конуса с радиусом R2. и высотой x-h.

Из подобия этих конусов получаем:
Выразим x:

Тогда объем усеченного конуса можно выразить:
Применив формулу разницы кубов, имеем:

Таким образом, формула объема усеченной пирамиды имеет вид:

Пример расчета объема усеченного конусаРадиусы основания усеченного конуса равны 11 и 27 , образующая относится к высоте как 17:15 . Найдите объем усеченного конуса.

Объем усеченного конуса вычисляется по формуле:
Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и разница радиусов оснований образуют прямоугольный треугольник.

Воспользовавшись теоремой Пифагора получаем: Так как образующая относится к высоте как 17:15, то L=17x, H=15x.

Тогда:

Тогда высота усеченного конуса будет равна:

Подставим значения в формулу объема усеченного конуса. Получим:

Page 5

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

Page 6

У большинства детей младшего школьного возраста хорошо развита механическая память, которая задействуется при выучивании правил.

Но для отдельных детей, а особенно творческих личностей, зубрежка является невыносимой.

Родители, думающие, что их чадо не способно освоить изучение таблицы умножения и поэтому в дальнейшем будет отставать в математике, заблуждаются. На самом деле к нему нужен совершенно другой, особый подход.

Читать далее

Ниже представлена таблица степеней от 2 до 10 натуральных чисел от 1 до 20.
Читать далее

Таблица кубов натуральных чисел от 1 до 100
Читать далее

Таблица факториалов от 1 до 40
Читать далее

Page 7

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

Источник: https://2mb.ru/matematika/geometriya/ploshhad-poverxnosti-konusa/

Конус. Формулы, признаки и свойства конуса

S боковой поверхности конуса. Как найти образующую конуса

Определение.

Конус — это геометрическое тело, которое образовано совокупностью всех лучей, исходящих из точки и пересекающих любую плоскую поверхность. В месте пересечения образуется основание конуса.

Определение. Вершина конуса – это точка (K), из которой исходят лучи.

Определение. Основание конуса – это плоскость, образованная в результате пересечения плоской поверхности и всех лучей, исходящих из вершины конуса. У конуса могут быть такие основы, как круг, эллипс, гипербола и парабола.

Определение. Образующей конуса (L) называется любой отрезок, который соединяет вершину конуса с границей основания конуса. Образующая есть отрезок луча, выходящего из вершины конуса.

Формула. Длина образующей (L) прямого кругового конуса через радиус R и высоту H (через теорему Пифагора):

L2 = R2 + H2

Определение. Направляющая конуса – это кривая, которая описывает контур основания конуса.

Определение. Боковая поверхность конуса – это совокупность всех образующих конуса. То есть, поверхность, которая образуется движением образующей по направляющей конуса.

Определение. Поверхность конуса состоит из боковой поверхности и основания конуса.

Определение. Высота конуса (H) – это отрезок, который выходит из вершины конуса и перпендикулярный к его основанию.

Определение. Ось конуса (a) – это прямая, проходящая через вершину конуса и центр основания конуса.

Определение. Конусность (С) конуса – это отношение диаметра основания конуса к его высоте. В случае усеченного конуса – это отношение разности диаметров поперечных сечений D и d усеченного конуса к расстоянию между ними: где C – конусность, D – диаметр основания, d – диаметр меньшего основания и h – расстояние между основаниями.

Конусность характеризует остроту конуса, то есть, угол наклона образующей к основанию конуса. Чем больше конусность, тем острее угол наклона. угол конуса α будет:

где R – радиус основы, а H – высота конуса. Определение. Осевое сечение конуса – это сечение конуса плоскостью, проходящей через ось конуса. Такое сечение образует равнобедренный треугольник, у которого стороны образованы образующими, а основание треугольника – это диаметр основания конуса. Определение. Касательная плоскость к конусу – это плоскость, проходящая через образующую конуса и перпендикулярна к осевому сечению конуса.

Определение. Конус, что опирается на круг, эллипс, гиперболу или параболу называется соответственно круговым, эллиптическим, гиперболическим или параболическим конусом (последние два имеют бесконечный объем).

Определение. Прямой конус – это конус у которого ось перпендикулярна основе. У такого конуса ось совпадает с высотой, а все образующие равны между собой. Формула. Объём кругового конуса: где R – радиус основы, а H – высота конуса. Формула. Площадь боковой поверхности (Sb) прямого конуса через радиус R и длину образующей L:

Sb = πRL

Формула. Общая площадь поверхности (Sp) прямого кругового конуса через радиус R и длину образующей L:

Sp = πRL + πR2

Определение. Косой (наклонный) конус – это конус у которого ось не перпендикулярна основе. У такого конуса ось не совпадает с высотой. Формула. Объём любого конуса: где S – площадь основы, а H – высота конуса. Определение. Усеченный конус – это часть конуса, которая находится между основанием конуса и плоскостью сечения, параллельная основе. Формула. Объём усеченного конуса: где S1 и S2 – площади меньшей и большей основы соответственно, а H и h – расстояние от вершины конуса до центра нижней и верхней основы соответственно.

1. Все образующие прямого кругового конуса равны между собой.

2. При вращении прямоугольного треугольника вокруг своего катета на 360 ° образуется прямой круговой конус.

3. При вращении равнобедренного треугольника вокруг своей оси на 180 ° образуется прямой круговой конус.

4. В месте пересечения конуса плоскостью, параллельной основанию конуса, образуется круг. (см. Срезанный конус)

5. Если при пересечении плоскость не параллельна основе конуса и не пересекается с основанием, то в месте пересечения образуется эллипс (рис. 3).

6. Если плоскость сечения проходит через основание, то в месте пересечения образуется парабола (рис. 4).

7. Если плоскость сечения проходит через вершину, то в месте пересечения образуется равнобедренный треугольник (см. Осевое сечение).

8. Центр тяжести любого конуса находится на одной четвертой высоты от центра основы.

Источник: https://ru.onlinemschool.com/math/formula/cone/

Конусы. Усеченные конусы. Объем, площади боковой и полной поверхностей конуса и усеченного конуса

S боковой поверхности конуса. Как найти образующую конуса

Справочник по математикеГеометрия (Стереометрия)Конусы

      Рассмотрим произвольную плоскость α, точку   S,   не лежащую на плоскости α,   и перпендикуляр   SO,   опущенный из точки   S   на плоскость   α   (точка   O   – основание перпендикуляра). Рассмотрим также произвольный круг с центром в точке   O,   лежащий на плоскости   α.

      Определение 1. Конусом называют фигуру, состоящую из всех отрезков, соединяющих точку   S   с точками указанного круга с центром в точке   O,   лежащего на плоскости   α   (рис. 1).

Рис.1

      Определение 2.

Точку   S   называют вершиной конуса.

Отрезок   SO   называют осью конуса.

Расстояние от точки   S   до плоскостиРасстояние от точки   S   до плоскости   α   (длину отрезка   SO)   называют высотой конуса.

Круг с центром в точке   O,   лежащий на плоскости   α,   называют основанием конуса, радиус этого круга называют радиусом основания конуса, а саму плоскость   α   называют плоскостью основания конуса.

Отрезки, соединяющие точку   S   с точками окружности называют образующими конуса.

Совокупность всех образующих конуса составляет боковую поверхность конуса (коническую поверхность).

Полная поверхность конуса состоит из основания конуса и его боковой поверхности.

      Замечание 1. Отрезок   SO   часто называют высотой конуса.

      Замечание 2. Все образующие конуса имеют одинаковую длину. У конуса с высотой   h   и радиусом основания   r   длина образующих равна

Усеченные конусы

      Рассмотрим конус с вершиной   S,   осью   SO,   радиусом основания   r   и высотой   h.   Плоскость   β,   параллельная параллельная плоскости основания конуса и расположенная на расстоянии   h1   от вершины расстоянии   h1   от вершины   S,   пересекает конус по кругу радиуса   r1   с центром в точке   O1   (рис. 2).

Рис.2

      Из подобия прямоугольных треугольников   SOA   и   SO1A1   можно выразить радиус   r1   через известные величины   r, h   и   h1:

      Таким образом, плоскость   β   делит конус на две части: конус с осью   SO1   и радиусом основания   r1,   а также вторую часть, называемую усеченным конусом (рис. 3).

Рис.3

      Усеченный конус ограничен двумя основаниями: кругом с центром в точке   O   радиуса   r   на плоскости   α   и кругом с центром в точке   O1 радиуса   r1   на плоскости   β,   а также боковой поверхностью усеченного конуса, которая представляет собой часть боковой поверхности исходного конуса, заключенную между плоскостями   α   и   β.   Полная поверхность усеченного конуса состоит из двух оснований усеченного конуса и его боковой поверхности. Часть каждой образующей исходного конуса, которая заключена между плоскостями   α   и   β,   называют образующей усеченного конуса. Например, на рисунке 3 одной из образующих усеченного конуса является отрезок   AA1.

      Высотой усеченного конуса называют расстояние между плоскостями расстояние между плоскостями оснований усеченного конуса. У усеченного конуса, изображенного на рисунке 2, высота равна   h – h1.

Объем, площади боковой и полной поверхностей конуса и усеченного конуса

      Введем следующие обозначения

      Тогда справедливы следующие формулы для вычисления объема, площади боковой и полной поверхности конуса, а также формулы для вычисления объема, площади боковой и полной поверхности усеченного конуса.

ФигураРисунокФормулы для объема, площади боковой и полной поверхности
Конус

Sосн = πr2,

Sбок= πrl,

Sполн = πr2 + πrl,

где
r – радиус основания конуса,
l  – длина образующей конуса,
h – высота конуса.

Усеченный конус

Sбок= π (r + r1)l ,

где
h – высота усеченного конуса,
r – радиус нижнего основания усеченного конуса,
r1 – радиус верхнего основания усеченного конуса,

l – длина образующей усеченного конуса.

Конус

Формулы для объема, площади боковой и полной поверхности:

Sосн = πr2,

Sбок= πrl,

Sполн = πr2 + πrl,

где
r – радиус основания конуса,
l – длина образующей конуса,
h – высота конуса.

Усеченный конус

Формулы для объема, площади боковой и полной поверхности:

,

Sбок= π (r + r1)l ,

где
h – высота усеченного конуса,
r – радиус нижнего основания усеченного конуса,
r1 – радиус верхнего основания усеченного конуса,

l – длина образующей усеченного конуса.

      Замечание 3. Формула для вычисления объема конуса

может быть получена из формулы объема правильной n – угольной пирамиды

при помощи предельного перехода, когда число сторон правильной пирамиды n неограниченно возрастает. Однако доказательство этого факта выходит за рамки школьной программы.

      Замечание 4. Формула для вычисления объема усеченного конуса

может быть получена из формулы объема правильной усеченной n – угольной пирамиды

при помощи предельного перехода, когда число сторон правильной усеченной пирамиды n неограниченно возрастает. Однако доказательство этого факта выходит за рамки школьной программы.

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ по математике.

Источник: https://www.resolventa.ru/uslugi/uslugischoollia.htm

WikiMedForum.Ru
Добавить комментарий