Сколько серединных перпендикуляров можно построить в треугольнике. Четыре замечательные точки треугольника

Четыре замечательные точки треугольника

Сколько серединных перпендикуляров можно построить в треугольнике. Четыре замечательные точки треугольника

Коканова Надежда Петровна

Цели:
– обобщить знания учащихся потеме «Четыре замечательные точки треугольника», продолжить работу по формированию навыков построения высоты, медианы, биссектрисы треугольника;

– познакомить учащихся с новыми понятиями вписанной окружности в треугольник и описанной около него;

– развивать навыкиисследования;- воспитывать настойчивость, точность, организованностьучащихся.

Задача: расширить познавательный интерес к предметугеометрия.

Оборудование:доска, чертёжные инструменты, цветные карандаши, модель треугольника на альбомном листе; компьютер, мультимедийный проектор, экран. 

Ход урока

1. Организационный момент (1 минута)
Учитель: На этом уроке каждый из вас почувствует себя в роли инженера-исследователя, после окончания практической работы вы сможете оценить себя. Чтобы  работа была успешна, надо очень точно и организовано выполнять все действия с моделью в ходе урока. Желаю успеха.
2. Подготовка к основному этапу урока (10-13 минут).Учитель: начертите в тетради неразвёрнутый угол

В. Какие вы знаете способы построения биссектрисы угла?

Определение биссектрисы угла. Два ученика выполняют на доскепостроение биссектрисы угла (по заранее заготовленным моделям) двумя способами: линейкой, циркулем. Следующие два ученика устнодоказывают утверждения:1. Каким свойством обладают точки биссектрисы угла?2. Что можно сказать о точках, лежащих внутри угла иравноудалённых от сторон угла?

Учитель: начертите в тетрадиостроугольный треугольник АВС и любым из способов, постройте  биссектрисы угла А и угла С, точка их

пересечения – точка О. Какую гипотезу можете выдвинуть о луче ВО? Докажите, что луч ВО – биссектриса треугольника АВС. Сформулируйте вывод о расположении всех биссектрис треугольника.
3. Работа с моделью треугольника (5-7 минут).    1 вариант – остроугольный треугольник;    2 вариант – прямоугольный  треугольник;    3 вариант – тупоугольный треугольник. 

Учитель: на модели треугольника постройте две биссектрисы, обведите их жёлтым цветом. Обозначьте точку пересечения

биссектрис точкой К.Смотреть слайд № 1.
4.  Подготовка к основному этапу урока (10-13 минут).
Учитель: начертите в тетради отрезок АВ. С помощью каких инструментов можно построить серединный перпендикуляр к отрезку? Определение серединного перпендикуляра. Два ученика выполняют на доскепостроение  серединного перпендикуляра

(по заранее заготовленным моделям) двумя способами: линейкой, циркулем. Следующие два ученика устно доказывают утверждения:1. Каким свойством обладают точки серединногоперпендикуляра к отрезку?

2. Что можно сказать о точках равноудалённых от концовотрезка АВ?Учитель: начертите в тетрадипрямоугольный треугольник АВС и постройте серединные перпендикуляры к двум любым сторонам треугольника АВС.

Обозначьте точку пересечения О. Проведите перпендикуляр к третьей стороне через точку О. Что вы заметили? Докажите, что это серединный перпендикуляр к отрезку.
5.

 Работа смоделью треугольника (5 минут).Учитель: на модели треугольникапостройте серединные перпендикуляры к двум сторонам треугольника и обведите их зелёным цветом.

Обозначьте точку пересечения серединных перпендикуляров точкой О. Смотреть слайд № 2.

6. Подготовка к основному этапуурока (5-7 минут).Учитель: начертите тупоугольныйтреугольник АВС и постройте две высоты. Обозначьте их точку пересечения О.
1. Что можно сказать о третьей высоте (третья высота,если её продолжить за основание, будет проходить через точку О)?

2. Как доказать, что все высоты пересекаются в однойточке?3. Какую новую фигуру образуют эти высоты и чем они в нейявляются? 

7. Работа с моделью треугольника (5 минут).

Учитель: на модели треугольника постройте три высоты и обведите их синим цветом. Обозначьте точку пересечения высот точкой Н. Смотреть слайд № 3.

Урок второй

8. Подготовка к основному этапу урока (10-12 минут).
Учитель: начертите остроугольный треугольник АВС и постройте все его медианы. Обозначьте их точку пересечения О. Какимсвойством обладают медианы треугольника?    

9. Работа с моделью треугольника (5минут).
Учитель: на модели треугольника постройте три медианы и обведите их коричневым цветом.

Обозначьте точку пересечения медиан точкой Т.Смотретьслайд № 4.
10. Проверка правильности построения (10-15 минут).1. Что можно сказать о точке К? / ТочкаК-точка пересечения биссектрис, она равноудалена от всех сторон треугольника/

2. Покажите на модели расстояние от точки К долюбой стороны треугольника. Какую фигуру вы начертили? Как расположен этот

отрезок к стороне? Выделите жирно простым карандашом. (Смотреть слайд № 5).3. Чем является точка, равноудалённаяот трёх точек плоскости, не лежащих на одной прямой? Постройте жёлтым карандашом окружность с центром К и радиусом, равным выделенному простым карандашом расстоянию. (Смотреть слайд № 6).

4. Что вы заметили? Как расположена этаокружность относительно треугольника? Вы вписали окружность в треугольник. Как можно назвать такую окружность?                                                 

Учитель даёт определение вписанной окружности в треугольник. 5. Что можно сказать о точке О? \ТочкаО –точка пересечения серединных перпендикуляров и она равноудалена от всех вершин треугольника \. Какую фигуру можно построить, связав точки А,В,С и О?6. Постройте зелёным цветомокружность(О; ОА). (Смотреть слайд № 7).

7. Что вы заметили? Как расположена этаокружность относительно треугольника? Как можно назвать такую окружность? Как в таком случае можно назвать треугольник?                                                                            

Учитель даёт определение описанной окружности около треугольника.
8. Приложите к точкам О,Н и Т линейку ипроведите красным цветом прямую через эти точки. Эта прямая называется прямой

Эйлера.( Смотреть слайд № 8).9. Сравните ОТ и ТН. Проверьте ОТ :ТН=1 : 2. (Смотреть слайд № 9).

10. а) Найдитемедианы треугольника (коричневым цветом). Отметьте чернилами основания медиан.

Где находятся эти три точки?
б) Найдитевысоты треугольника (синим цветом). Отметьте чернилами основания высот. Сколько этих точек? \ 1 вариант-3; 2 вариант-2; 3 вариант-3\.в) Измерьтерасстояния от вершин до точки пересечения высот. Назовите эти расстояния (АН,

ВН, СН). Найдите середины этих отрезков и выделите чернилами. Сколько таких

точек? \1 вариант-3; 2 вариант-2; 3 вариант-3\.
11. Посчитайте, сколько получилосьточек, отмеченных чернилами? \ 1 вариант – 9; 2 вариант-5; 3 вариант-9\. Обозначьте

точки D1 , D2 ,…, D9. (Смотреть слайд № 10).Через этиточки можно построить окружность Эйлера. Центр окружности точка Е находится в середине отрезка ОН. Строим красным цветом окружность (Е ; ЕD1). Эта окружность, как и прямая,названа именем великого учёного. (Смотреть слайд № 11).

  
11. Презентация об Эйлере (5 минут).
12. Итог (3 минуты).«5»- если получились точно жёлтая, зелёная и краснаяокружности и прямая Эйлера. «4»-если неточно получились окружности на 2-3мм. «3»- если неточно получились окружности на 5-7мм.

Источник: https://open-lesson.net/3141/

Точка пересечения медиан треугольника

Теорема 1

О пересечении медиан треуголника: Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 1).

Рисунок 1. Медианы треугольника

По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $\angle ABB_1=\angle BB_1A_1,\ \angle BAA_1=\angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда

Аналогично доказывается, что

Теорема доказана.

Точка пересечения биссектрис треугольника

Теорема 2

О пересечении биссектрис треугольника: Биссектрисы треугольника пересекаются в одной точке.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Доказательство.

Рассмотрим треугольник $ABC$, где $AM,\ BP,\ CK$ его биссектрисы. Пусть точка $O$ – точка пересечения биссектрис $AM\ и\ BP$. Проведем из этой точки перпендикуляры к сторонам треугольника (рис. 2).

Рисунок 2. Биссектрисы треугольника

Для доказательства нам потребуется следующая теорема.

Теорема 3

Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.

По теореме 3, имеем: $OX=OZ,\ OX=OY$. Следовательно, $OY=OZ$. Значит точка $O$ равноудалена от сторон угла $ACB$ и, значит, лежит на его биссектрисе $CK$.

Теорема доказана.

Точка пересечения серединных перпендикуляров треугольника

Теорема 4

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство.

Пусть дан треугольник $ABC$, $n,\ m,\ p$ его серединные перпендикуляры. Пусть точка $O$ – точка пересечения серединных перпендикуляров $n\ и\ m$ (рис. 3).

Рисунок 3. Серединные перпендикуляры треугольника

Для доказательства нам потребуется следующая теорема.

Теорема 5

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов данного отрезка.

По теореме 3, имеем: $OB=OC,\ OB=OA$. Следовательно, $OA=OC$. Значит точка $O$ равноудалена от концов отрезка $AC$ и, значит, лежит на его серединном перпендикуляре $p$.

Теорема доказана.

Точка пересечения высот треугольника

Теорема 6

Высоты треугольника или их продолжения пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его высоты. Проведем через каждую вершину треугольника прямую, параллельную противоположной вершине стороне. Получаем новый треугольник $A_2B_2C_2$ (рис. 4).

Рисунок 4. Высоты треугольника

Так как $AC_2BC$ и $B_2ABC$ параллелограммы с общей стороной, то $AC_2=AB_2$, то есть точка $A$ — середина стороны $C_2B_2$. Аналогично, получаем, что точка $B$ — середина стороны $C_2A_2$, а точка $C$ — середина стороны $A_2B_2$.

Из построения мы имеем, что ${CC}_1\bot A_2B_2,\ {BB}_1\bot A_2C_2,\ {AA}_1\bot C_2B_2$. Следовательно, ${AA}_1,\ {BB}_1,\ {CC}_1$ — серединные перпендикуляры треугольника $A_2B_2C_2$.

Тогда, по теореме 4, имеем, что высоты ${AA}_1,\ {BB}_1,\ {CC}_1$ пересекаются в одной точке.

Теорема доказана.

Пример задачи на использование 4 замечательных точек треугольника

Пример 1

Серединные перпендикуляры к сторонам $AB$ и $AC$ треугольника $ABC$ пересекаются в точке $D$ стороны $BC$. Докажите, что

а) точка $D$ — середина стороны $BC$.

б) $\angle A=\angle B+\angle C$

Решение.

Изобразим рисунок.

Рисунок 5.

а) По теореме 4, все серединные перпендикуляры пересекаются в точке $D$. Следовательно, $D$ – основание серединного перпендикуляра к стороне $BC$. Значит точка $D$ — середина стороны $BC$.

б) Так как $X$ и $D$ — середины сторон, то $XD$ — средняя линия треугольника. Тогда, по теореме о средней линии треугольника $XD||AC$. Значит,$\angle A=\angle DXB$, как соответственные углы. Значит, $\angle A={90}0$. Тогда$\angle B+\angle C={180}0-\angle A={180}0-{90}0={90}0=\angle A$

ч. т. д.

Источник: https://spravochnick.ru/matematika/okruzhnost/chetyre_zamechatelnye_tochki_treugolnika/

урок «Четыре замечательные точки треугольника»

Сколько серединных перпендикуляров можно построить в треугольнике. Четыре замечательные точки треугольника
§ 1  Теорема о биссектрисе угла

С любым треугольником в геометрии связаны четыре точки:

1) точка пересечения медиан;

2) точка пересечения биссектрис;

3) точка пересечения высот (или их продолжений);

4) точка пересечения серединных перпендикуляров к сторонам.

Эти четыре точки называют замечательными точками треугольника.

В этом уроке рассмотрим и докажем теоремы, следствия из этих теорем, связанные с замечательными точками треугольника, и рассмотрим их применение при решении задач.

Познакомимся сначала с теоремой о биссектрисе угла.

Теорема:

Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.

Обратно:

Каждая точка, лежащая внутри угла и равноудаленная от сторон угла, лежит на его биссектрисе.

Докажем эти утверждения.

Дано:

∠ВАС, АМ – биссектриса, МК и МL перпендикулярны к прямым АВ и АС.

Доказать:

МК = МL

Доказательство:

Рассмотрим прямоугольные треугольники АКМ и АLМ.

Они равны по гипотенузе и острому углу (АМ – общая сторона, ∠1 = ∠2 , так как по условию АМ – биссектриса).

Из равенства треугольников следует МК = МL.

Теперь докажем обратное утверждение.

Дано:

∠ВАС, точка М лежит внутри угла и равноудалена от сторон угла АВ и АС.

Доказать:

луч АМ – биссектриса ∠ВАС.

Доказательство:

Проведем перпендикуляры МК и МL к прямым АВ и АС.

Прямоугольные треугольники АМК и АМL равны по гипотенузе и катету (АМ – общая гипотенуза, МК = МL по условию).

Следовательно, ∠1 = ∠2, это означает, что луч АМ – биссектриса ∠ВАС.

Теорема доказана.

Из утверждения теоремы следует еще одно утверждение.

Следствие: биссектрисы треугольника пересекаются в одной точке.

§ 2  Теорема о серединном перпендикуляре к отрезку

Перейдем к теореме о серединном перпендикуляре к отрезку.

Но сначала дадим определение.

Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярная к нему.

На рисунке прямая а является серединным перпендикуляром к отрезку АВ.

Теорема:

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.

Обратно:

Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

Дано:

АВ – отрезок, прямая m – серединный перпендикуляр к отрезку АВ, точка О – середина этого отрезка.

М – произвольная точка прямой m.

Доказать: АМ = ВМ

Доказательство:

Если точка М совпадает с точкой О, то равенство АМ = ВМ верно.

Пусть М и О – различные точки.

Прямоугольные треугольники ОАМ и ОВМ равны по двум катетам (ОА = ОВ по условию, ОМ – общий катет), из равенства треугольников следует, что АМ = ВМ.

Докажем обратное утверждение.

Дано:

АВ – отрезок, N – произвольная точка такая, что АN = ВN.

Доказать:

точка N лежит на прямой m – серединном перпендикуляре к АВ.

Доказательство:

если точка N – точка прямой АВ, то она совпадает с серединой О отрезка АВ и потому лежит на прямой m.

Если же точка N не лежит на прямой АВ, то треугольник АNВ – равнобедренный, так как АN = ВN.

Отрезок NО является медианой равнобедренного треугольника, значит, она является и его высотой.

Таким образом, NО перпендикулярен АВ, поэтому прямые ОN и m совпадают, т.е. точка N – точка прямой m.

Теорема доказана.

Следствием доказанной теоремы является следующее утверждение.

Следствие: серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

§ 3  Теорема о пересечении высот теугольника

Рассмотрим еще одну теорему о пересечении высот треугольника.

Теорема:

Высоты треугольника (или их продолжения) пересекаются в одной точке.

Дано:

АА1 , ВВ1, СС1 – высоты треугольника АВС.

Доказать:

АА1 , ВВ1, СС1 пересекаются в точке О.

Доказательство:

Проведем через вершины А, В и С прямые, параллельные противоположным сторонам треугольника.

Получим треугольник А2В2С2.

Точки А, В, С являются серединами треугольника А2В2С2.

Действительно, в параллелограммах АВА2Си АВСВ2 противоположные стороны равны, т.е. АВ = А2С, АВ = СВ2 , поэтому А2С = СВ2.

Аналогично С2А = АВ2 и С2В = ВА2.

Из построения следует, что СС2 перпендикулярно А2В2, АА1 перпендикулярно В2С2, ВВ1 перпендикулярно А2С2.

Таким образом, прямые АА1, ВВ1, СС1 являются серединными перпендикулярами к сторонам треугольника А2В2С2, следовательно, они пересекаются в одной точке.

Теорема доказана.

Решим задачу, используя полученные знания.

Задача.

В треугольнике АВС проведены высоты АК и ВD, пересекающиеся в точке О.

Угол САВ = 42°.

Найдите величину угла АСО.

Дано:

∆АВС, АК и ВD – высоты треугольника АВС, пересекающиеся в точке О, ∠САВ = 42°

Найти:

∠АСО.

Решение:

для вычисления угла АСО проведем еще одну высоту СМ треугольника АВС, по теореме о пересечении высот треугольника высота СМ пройдет через точку О, а значит, треугольник АСМ – прямоугольный.

Тогда ∠АСО = 180° – (90° + 42°) = 48°.

В этом уроке познакомились с замечательными точками треугольника, рассмотрели теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку и их следствия, теорему о пересечении высот (или их продолжений), а также рассмотрели решение задачи по теме урока.

Список использованной литературы:

  1. Л.С. Атанасян. Учебник. 8 класс.
  2. Н.Ф. Гаврилова. Поурочные разработки по геометрии. 8 класс. – Москва: «Вако», 2005.
  3. Л.С. Атанасян и др. Методические рекомендации к учебнику. – Москва: «Просвещение», 2001.
  4. Д.А. Мальцева. Математика. 9 класс. ГИА 2014. – Москва: Народное образование, 2013.
  5. О.В. Белицкая. Геометрия. 8 класс. Тесты. – Саратов: «Лицей», 2009.
  6. С.П. Бабенко, И.С. Маркова. Геометрия 8. Комплексная тетрадь для контроля знаний. – Москва: «Аркти», 2014.

Источник: https://znaika.ru/catalog/8-klass/geometry/Chetyre-zamechatelnye-tochki-treugolnika.html

Исследовательский проект Замечательные точки треугольника

Сколько серединных перпендикуляров можно построить в треугольнике. Четыре замечательные точки треугольника

Введение………………………………………………………………………………………3

Глава1. Исторические сведения о замечательных точках треугольника

1.1 Треугольник………………………………………………………………………………..4

1.2. Медианы треугольника

1.3. Биссектрисы треугольника

1.4. Высоты в треугольнике

1.5. Серединные перпендикуляры к сторонам треугольника

Глава 2. Исследование замечательных точек треугольника.

Заключение

Список использованной литературы

Буклет

Введение

Геометрия – это раздел математики, который рассматривает различные фигуры и их свойства. Геометрия начинается с треугольника. Вот уже два с половиной тысячелетия треугольник является символом геометрии; но он не только символ, треугольник – атом геометрии.

В своей работе я рассмотрю свойства точек пересечения биссектрис, медиан и высот треугольника, расскажу о замечательных их свойствах и линиях треугольника.

К числу таких точек, изучаемых в школьном курсе геометрии, относятся:

а) точка пересечения биссектрис (центр вписанной окружности);

б) точка пересечения серединных перпендикуляров (центр описанной окружности);

в) точка пересечения высот (ортоцентр);

г) точка пересечения медиан (центроид).

Актуальность: расширить свои знания о треугольнике,свойствах егозамечательных точек.

Цель: исследование треугольника на его замечательные точки,изучение ихклассификаций и свойств.

Задачи:

1. Изучить необходимую литературу

2. Изучить классификацию замечательных точек треугольника

3. Уметь строить замечательные точки треугольника.

4. Обобщить изученный материал для оформления буклета.

Гипотеза проекта:

умение находить замечательные точки в любом треугольнике, позволяет решать геометрические задачи на построение.

Глава 1. Исторические сведения о замечательных точках треугольника

 В четвертой книге “Начал” Евклид решает задачу: “Вписать круг в данный треугольник”. Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанного круга.

Из решения другой задачи Евклида вытекает, что перпендикуляры, восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке – центре описанного круга.

В “Началах” не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово “ортос” означает “прямой”, “правильный”). Это предложение было, однако, известно Архимеду, Паппу, Проклу.

Четвертой особенной точкой треугольника является точка пересечения медиан. Архимед доказал, что она является центром тяжести (барицентром) треугольника. На вышеназванные четыре точки было обращено особое внимание, и начиная с XVIII века они были названы “замечательными” или “особенными” точками треугольника.

Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – “геометрии треугольника” или “новой геометрии треугольника”, одним из родоначальников которой стал Леонард Эйлер. В 1765 году Эйлер доказал, что в любом треугольнике ортоцентр, барицентр и центр описанной окружности лежат на одной прямой, названной позже “прямой Эйлера”.

Треугольник — геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки. Точки — вершины треугольника, отрезки — стороны треугольника.

В А, В, С – вершины

АВ, ВС, СА – стороны

А С

С каждым треугольником связаны четыре точки:

  1. Точка пересечения медиан;

  2. Точка пересечения биссектрис;

  3. Точка пересечения высот.

  4. Точка пересечения серединных перпендикуляров;

1.2. Медианы треугольника

Медина треугольника ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны (Рисунок 1). Точка пересечения медианы со стороной треугольника называется основанием медианы.

Рисунок 1. Медианы треугольника

Построим середины сторон треугольника и проведем отрезки, соединяющую каждую из вершин с серединой противолежащей стороны. Такие отрезки называются медианой.

И вновь мы наблюдаем, что и эти отрезки пересекаются в одной точке. Если мы измерим длины получившихся отрезков медиан, то можно проверить еще одно свойство: точка пересечения медиан делит все медианы в отношении 2:1, считая от вершин.

И еще, треугольник, который опирается на острие иглы в точке пересечения медиан, находится в равновесии! Точка, обладающая таким свойством, называется центром тяжести (барицентр). Центр равных масс иногда называют центроидом.

 Поэтому свойства медиан треугольника можно сформулировать так: медианы треугольника пересекаются в центре тяжести и точкой пересечения делятся в отношении 2:1, считая от вершины.

1.3. Биссектрисы треугольника

Биссектрисой треугольника называется отрезок биссектрисы угла, проведенный от вершины угла до её пересечения с противолежащей стороной. У треугольника существуют три биссектрисы, соответствующие трём его вершинам (Рисунок 2).

Рисунок 2. Биссектриса треугольника

В произвольном треугольнике ABC проведем биссектрисы его углов. И вновь при точном построении все три биссектрисы пересекутся в одной точке D. Точка D – тоже необычная: она равноудалена от всех трех сторон треугольника. В этом можно убедиться, если опустить перпендикуляры DA 1, DB 1 и DC1 на стороны треугольника. Все они равны между собой: DA1=DB1=DC1.

Если провести окружность с центром в точке D и радиусом DA 1, то она будет касаться всех трех сторон треугольника (то есть будет иметь с каждым из них только одну общую точку). Такая окружность называется вписанной в треугольник. Итак, биссектрисы углов треугольника пересекаются в центре вписанной окружности.

1.4. Высоты в треугольнике

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону или прямую, совпадающую с противоположной стороной.

В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника у тупоугольного треугольника (Рисунок 3).

Рисунок 3. Высоты в треугольниках

  • Если в треугольнике построить три высоты, то все они пересекутся в одной точке H. Эта точка называется ортоцентром. (Рисунок 4).

С помощью построений можно проверить, что в зависимости от вида треугольника ортоцентр располагается по – разному:

  • у остроугольного треугольника – внутри;
  • у прямоугольного – на гипотенузе;
  • у тупоугольного – снаружи.

Рисунок 4. Ортоцентр треугольника

Таким образом, мы познакомились еще с одной замечательной точкой треугольника и можем сказать, что: высоты треугольника пересекаются в ортоцентре.

1.5. Серединные перпендикуляры к сторонам треугольника

Серединный перпендикуляр к отрезку — это прямая, перпендикулярная данному отрезку и проходящая через его середину.

Начертим произвольный треугольник ABC и проведем серединные перпендикуляры к его сторонам. Если построение выполнено точно, то все перпендикуляры пересекутся в одной точке – точке О. Эта точка равноудалена от всех вершин треугольника. Другими словами, если провести окружность с центром в точке О, проходящую через одну из вершин треугольника, то она пройдет и через две другие его вершины.

Окружность, проходящая через все вершины треугольника, называется описанной около него. Поэтому установленное свойство треугольника можно сформулировать так: серединные перпендикуляры к сторонам треугольника пересекаются в центре описанной окружности (Рисунок 5).

Рисунок 5. Треугольник вписанный в окружность

Глава 2. Исследование замечательных точек треугольника.

Исследование высоты в треугольниках

 Все три высоты треугольника пересекаются в одной точке. Эта точка называется ортоцентром треугольника.

 Высоты остроугольного треугольника расположены строго внутри треугольника.

Соответственно, точка пересечения высот также находится внутри треугольника.

В прямоугольном треугольнике две высоты совпадают со сторонами. (Это высоты, проведенные из вершин острых углов к катетам).

Высота, проведенная к гипотенузе, лежит внутри треугольника .

AC — высота, проведенная из вершины С к стороне AB.

AB — высота, проведенная из вершины B к стороне AC.

AK — высота, проведенная из вершины прямого угла А к гипотенузе ВС.

Высоты прямоугольного треугольника пересекаются в вершине прямого угла (А — ортоцентр).

В тупоугольном треугольника внутри треугольника лежит только одна высота — та, которая проведена из вершины тупого угла.

Две другие высоты лежат вне треугольника и опущены к продолжению сторон треугольника.

AK — высота, проведенная к стороне BC.

BF — высота, проведенная к продолжению стороны АС.

CD — высота, проведенная к продолжению стороны AB.

Точка пересечения высот тупоугольного треугольника также находится вне треугольника:

H — ортоцентр треугольника ABC.

Исследование биссектрис в треугольнике

Биссектриса треугольника является частью биссектрисы угла треугольника (луча), которая находится внутри треугольника.

Все три биссектрисы треугольника пересекаются в одной точке.

Точка пересечения биссектрис в остроугольном, тупоугольном и прямоугольном треугольниках, является центром вписанной в треугольник окружности и находится внутри.

Исследование медиан в треугольнике

Так как у треугольника три вершины и три стороны, то и отрезков, соединяющих вершину и середину противолежащей стороны, тоже три.

Исследовав эти треугольники я понял, что в любом треугольнике медианы пересекаются в одной точке. Эту точку называют центром тяжести треугольника.

Исследование серединных перпендикуляров к стороне треугольника

Серединный перпендикуляр треугольника – это перпендикуляр, проведенный к середине стороны треугольника.

Три серединных перпендикуляра треугольника пересекаются в одной точке, являются центром описанной окружности.

Точка пересечения серединных перпендикуляров в остроугольном треугольнике лежит внутри треугольника; в тупоугольном – вне треугольника; в прямоугольном – на середине гипотенузы.

Заключение

В ходе проделанной работы мы приходим к следующим выводам:

  1. Цель достигнута: исследовали треугольник и нашли его замечательные точки.

  2. Поставленные задачи решены:

1). Изучили необходимую литературу;

2). Изучили классификацию замечательных точек треугольника;

3). Научились строить замечательные точки треугольника;

4). Обобщили изученный материал для оформления буклета.

Гипотеза, что умение находить замечательные точки треугольника, помогает в решении задач на построение подтвердилась.

В работе последовательно излагаются приемы построения замечательных точек треугольника, приведены исторические сведения о геометрических построениях.

Сведения из данной работы могут пригодиться на уроках геометрии в 7 классе. Буклет может стать справочником по геометрии по изложенной теме.

Список литературы

  1. Учебник.  Л.С. Атанасян «Геометрия 7-9 классы Мнемозина,2015.

  2. Википедияhttps://ru.wikipedia.org/wiki/Геометрия#/media/File:Euclid%27s_postulates.png

  3. Портал Алые Паруса https://ru.wikipedia.org/wiki/Геометрия

  4. Ведущий образовательный портал России http://cendomzn.ucoz.ru/index/0-15157

Источник: https://infourok.ru/issledovatelskiy-proekt-zamechatelnie-tochki-treugolnika-3158516.html

Четыре замечательные точки треугольника. урок. Геометрия 8 Класс

Сколько серединных перпендикуляров можно построить в треугольнике. Четыре замечательные точки треугольника

Тема: Повторение курса геометрии 8 класса

Урок: Четыре замечательные точки треугольника

Треугольник – это, прежде всего, три отрезка и три угла, поэтому свойства отрезков и углов являются основополагающими.

Задан отрезок АВ. У любого отрезка есть середина, и через нее можно провести перпендикуляр – обозначим его за р. Таким образом, р – серединный перпендикуляр.

Теорема (основное свойство серединного перпендикуляра)

Любая точка, лежащая на серединном перпендикуляре, равноудалена от концов отрезка.

Доказать, что

Доказательство:

Рассмотрим треугольники  и  (см. Рис. 1). Они прямоугольные и равные, т.к. имеют общий катет ОМ, а катеты АО и ОВ равны по условию, таким образом, имеем два прямоугольных треугольника, равных по двум катетам. Отсюда следует, что гипотенузы треугольников тоже равны, то есть , что и требовалось доказать.

Рис. 1

Справедлива обратная теорема.

Теорема

Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.

Задан отрезок АВ, серединный перпендикуляр к нему р, точка М, равноудаленная от концов отрезка (см. Рис. 2).

Доказать, что точка М лежит на серединном перпендикуляре к отрезку.

Рис. 2

Доказательство:

Рассмотрим треугольник . Он равнобедренный, так как  по условию. Рассмотрим медиану треугольника: точка О – середина основания АВ, ОМ – медиана.

Согласно свойству равнобедренного треугольника, медиана, проведенная к его основанию, является одновременно высотой и биссектрисой. Отсюда следует, что . Но прямая р также перпендикулярна АВ.

Мы знаем, что в точку О можно провести единственный перпендикуляр к отрезку АВ, значит, прямые ОМ и р совпадают, отсюда следует, что точка М принадлежит прямой р, что и требовалось доказать.

Если необходимо описать окружность около одного отрезка, это можно сделать, и таких окружностей бесконечно много, но центр каждой из них будет лежать на серединном перпендикуляре к отрезку.

Говорят, что серединный перпендикуляр есть геометрическое место точек, равноудаленных от концов отрезка.

Треугольник состоит из трех отрезков. Проведем к двум из них серединные перпендикуляры и получим точку О их пересечения (см. Рис. 3).

Точка О принадлежит серединному перпендикуляру к стороне ВС треугольника, значит, она равноудалена от его вершин В и С, обозначим это расстояние за R: .

Кроме того, точка О находится на серединном перпендикуляре к отрезку АВ, т.е. , вместе с тем , отсюда .

Таким образом, точка О пересечения двух серединных

Рис. 3

перпендикуляров треугольника равноудалена от его вершин, а значит, она лежит и на третьем серединном перпендикуляре.

Мы повторили доказательство важной теоремы.

Три серединных перпендикуляра треугольника пересекаются в одной точке – центре описанной окружности.

Итак, мы рассмотрели первую замечательную точку треугольника – точку пересечения его серединных перпендикуляров.

Перейдем к свойству произвольного угла (см. Рис. 4).

Задан угол , его биссектриса AL, точка М лежит на биссектрисе.

Рис. 4

Если точка М лежит на биссектрисе угла, то она равноудалена от сторон угла, то есть расстояния от точки М до АС и до ВС сторон угла равны.

Доказательство:

Расстояние от точки до прямой есть длина перпендикуляра. Проведем из точки М перпендикуляры МК к стороне АВ и МР к стороне АС.

Рассмотрим треугольники  и . Это прямоугольные треугольники, и они равны, т.к. имеют общую гипотенузу АМ, а углы  и  равны, так как AL – биссектриса угла . Таким образом, прямоугольные треугольники равны по гипотенузе и острому углу, отсюда следует, что , что и требовалось доказать. Таким образом, точка на биссектрисе угла равноудалена от сторон этого угла.

Справедлива обратная теорема.

Теорема

Если точка равноудалена от сторон неразвернутого угла, то она лежит на его биссектрисе (см. Рис. 5).

Задан неразвернутый угол , точка М, такая, что расстояние от нее до сторон угла одинаковое.

Доказать, что точка М лежит на биссектрисе угла.

Рис. 5

Доказательство:

Расстояние от точки до прямой есть длина перпендикуляра. Проведем из точки М перпендикуляры МК к стороне АВ и МР к стороне АС.

Рассмотрим треугольники  и . Это прямоугольные треугольники, и они равны, т.к. имеют общую гипотенузу АМ, катеты МК и МР равны по условию.

Таким образом, прямоугольные треугольники равны по гипотенузе и катету.

Из равенства треугольников следует равенство соответствующих элементов, против равных катетов лежат равные углы, таким образом, , следовательно, точка М лежит на биссектрисе данного угла.

Если необходимо вписать в угол окружность, это можно сделать, и таких окружностей бесконечно много, но их центры лежат на биссектрисе данного угла.

Говорят, что биссектриса есть геометрическое место точек, равноудаленных от сторон угла.

Треугольник состоит из трех углов. Построим биссектрисы двух из них, получим точку О их пересечения (см. Рис. 6).

Точка О лежит на биссектрисе угла , значит, она равноудалена от его сторон АВ и ВС, обозначим расстояние за r: . Также точка О лежит на биссектрисе угла , значит, она равноудалена от его сторон АС и ВС: , , отсюда .

Несложно заметить, что точка пересечения биссектрис равноудалена от сторон третьего угла, а значит, она лежит на

Рис. 6

биссектрисе угла . Таким образом, все три биссектрисы треугольника пересекаются в одной точке.

Итак, мы вспомнили доказательство еще одной важной теоремы.

Биссектрисы углов треугольника пересекаются в одной точке – центре вписанной окружности.

Итак, мы рассмотрели вторую замечательную точку треугольника – точку пересечения биссектрис.

Мы рассмотрели биссектрису угла и отметили ее важные свойства: точки биссектрисы равноудалены от сторон угла, кроме того, отрезки касательных, проведенных к окружности из одной точки, равны.

Введем некоторые обозначения (см. Рис. 7).

Обозначим равные отрезки касательных через х, у и z. Сторона ВС, лежащая против вершины А, обозначается как а, аналогично АС как b, АВ как с.

Рис. 7

Задача 1: в треугольнике известны полупериметр и длина стороны а. Найти длину касательной, проведенной из вершины А – АК, обозначенную за х.

Очевидно, что треугольник задан не полностью, и таких треугольников много, но, оказывается, некоторые элементы у них общие.

Для задач, в которых речь идет о вписанной окружности, можно предложить следующую методику решения:

1.      Провести биссектрисы и получить центр вписанной окружности.

2.      Из центра О провести перпендикуляры к сторонам и получить точки касания.

3.      Отметить равные касательные.

4.      Выписать связь между сторонами треугольника и касательными.

5.      Решить систему в соответствии с требованиями задачи.

Согласно условию, нам необходимо найти только касательную х, для этого сложим все три уравнения системы:

В левой части уравнения мы получили периметр треугольника :

Сократим на два:

Получили важный факт: полупериметр есть сумма трех различных касательных.

, отсюда ,

Можно самостоятельно выразить аналогично отрезки касательных у через сторону b и z через сторону с:

Выразим одну из касательных только через стороны треугольника:

В прямоугольном треугольнике одна из касательных является радиусом:

Для доказательства данного факта рекомендуется пользоваться описанным выше алгоритмом.

Третья замечательная точка треугольника – точка пересечения высот (или их продолжений) – ортоцентр.

Последняя замечательная точка – точка пересечения медиан.

Напомним, что три медианы треугольника пересекаются в одной точке и делятся ею в отношении 2:1, считая от вершины.

Итак, мы рассмотрели четыре замечательных точки треугольника, подробно вспомнили центр описанной и вписанной окружностей, доказали теоремы, кроме того, упомянули ортоцентр и точку пересечения медиан.

Список литературы

  1. Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Bymath.net (Источник).
  2. School-collection.edu.ru (Источник).

Домашнее задание

  1. Задание 1: докажите, что в остроугольном треугольнике точка пересечения высот является центром окружности, вписанной в треугольник, вершинами которого являются основания высот данного треугольника.
  2. Задание 2: докажите, что точка пересечения медиан треугольника, с вершинами в серединах сторон данного, совпадает с точкой пересечения медиан данного треугольника.
  3. Задание 3: в треугольнике  угол  равен , Н – точка пересечения высот. Чему может быть равен угол ?

Источник: https://interneturok.ru/lesson/geometry/8-klass/povtorenie-kursa-geometrii-8-go-klassa/chetyre-zamechatelnye-tochki-treugolnika

WikiMedForum.Ru
Добавить комментарий