Валентное состояние химические связи атомов элементов. Что такое валентность: как определять и как использовать. Что мы узнали

Как определить валентность

Валентное состояние химические связи атомов элементов. Что такое валентность: как определять и как использовать. Что мы узнали

В этой статье рассмотрим способы и поймем, как определить валентность элементов таблицы Менделеева.

В химии принято, что валентность химических элементов можно узнать по группе (колонке) в таблице Менделеева. В действительности не всегда валентность элемента соответствует номеру группы, но в большинстве случаев определенная валентность по такому методу даст правильный результат часто элементы, в зависимости от разных факторов, имеют не одну валентность.

За единицу валентности принята валентность атома водорода, равная 1, то есть водород одновалентен. Поэтому валентность элемента указывает на то, со сколькими атомами водорода соединён один атом рассматриваемого элемента. Например, HCl, где хлор – одновалентен; H2O, где кислород – двухвалентен; NH3, где азот – трёхвалентен.

Как определить валентность по таблице Менделеева

Таблица Менделеева содержит в себе химические элементы, которые размещены в ней по определенным принципам и законам.

Каждый элемент стоит на месте, который определяется его характеристиками и свойствами и каждый элемент имеет свой номер. Горизонтальные линии называются периодами, которые возрастают от первой строки вниз.

Если период состоит из двух рядов (что указано сбоку нумерацией), то такой период называется большим. Если он имеет только один ряд, то называется малым.

Кроме того, в таблице есть группы, которых всего восемь. Элементы размещаются в столбцах по вертикали. Здесь их размещение неравномерно – с одной стороны больше элементов (главная группа), с другой – меньше (побочная группа).

Валентностью называют способность атома образовывать некоторое количество химических связей с атомами других элементов. Как определить валентность по таблице Менделеева поможет понять знание видов валентности.

Виды валентности
Постоянная (у металлов главных подгрупп)Переменная (у неметаллов  и металлов побочных подгрупп)
Высшая (равна номеру группы)Низшая (равна разности между числом 8 и номером группы)

Для элементов побочных подгрупп (а к ним относятся только металлы) валентность нужно запоминать, тем более что в большинстве случае она равна I, II, реже III. Также придется заучить валентности химических элементов, которые имеют более двух значений. Или постоянно держать под рукой таблицу валентности элементов.

Алгоритм определения валентности по формулам химических элементов

1. Записать формулу химического соединения.

2. Обозначить известную валентность элементов.

3. Найти наименьшее общее кратное валентности и индекса.

4. Найти соотношение наименьшего общего кратного к количеству атомов второго элемента. Это и есть искомая валентность.

5. Сделать проверку путём перемножения валентности и индекса каждого элемента. Их произведения должны быть равны.

Пример: определим валентность элементов сульфида водорода.

1. Запишем формулу:

H2S

2. Обозначим известную валентность:

I

H2S

3. Найдём наименьшее общее кратное:

2

I

H2S

4. Найдём соотношение наименьшего общего кратного к количеству атомов серы:

2

I II

H2S

5. Сделаем проверку:

I II

H2S

(2=2)

Таблица характерных значений валентностей некоторых атомов химических соединений

ЭлементыВалентностьПримеры соединений
H, F, Li, Na, KIH2, HF, Li2O, NaCl, KBr
O, Mg, Ca, Sr, Ba, ZnIIH2O, MgCl2, CaH2, SrBr2, BaO, ZnCl2
B, AlIIIBCl3, AlBr3
C, SiIVCO2, CH4, SiO2, SiCl4
CuI, IICu2O, CuO
FeII, IIIFeCl2, FeCl3
CrII, III, VICrCl2, CrCl3, CrO3
SII, IV, VIH2S, SO2, SO3
NIII, IVNH3, NH4Cl, HNO3
PIII, VPH3, P2O5, H3PO4
Sn, PbII, IVSnCl2, SnCl4, PbO, PbO2
Cl, Br, II, III, V, VIIHCl, ClF3, BrF5, IF7

Источник: https://www.calc.ru/Kak-Opredelit-Valentnost.html

Валентные возможности атомов химических элементов. урок. Химия 11 Класс

Валентное состояние химические связи атомов элементов. Что такое валентность: как определять и как использовать. Что мы узнали

Свойства атома во многом определяется строением его внешнего электронного слоя. Электроны, находящиеся на внешнем, а иногда и на предпоследнем, электронном слое атома могут принимать участие в образовании химических связей. Такие электроны называют валентными. Например, в атоме фосфора 5 валентных электронов:  (рис. 1). 

Рис. 1. Электронная формула атома фосфора

Валентные электроны атомов элементов главных подгрупп расположены на s- и р-орбиталях внешнего электронного слоя. У элементов побочных подгрупп, кроме лантаноидов и актиноидов, валентные электроны расположены на s-орбитали внешнего и d-орбиталях предпоследнего слоев.

Валентность – это способность атома образовывать химические связи. Данное определение и само понятие валентность корректны только по отношению к веществам с ковалентным типом связи. Для ионных соединений это понятие неприменимо, вместо него используют формальное понятие «степень окисления».

Валентность характеризуется числом электронных пар, образующихся при взаимодействии атома с другими атомами. Например, валентность азота в аммиаке NH3 равна трем (Рис. 2).

Рис. 2. Электронная и графическая формулы молекулы аммиака

Количество электронных пар, которое может образовать атом с другими атомами, зависит, в первую очередь, от числа его неспаренных электронов. Например, в атоме углерода два неспаренных электрона – на 2р-орбиталях (Рис. 3). По числу неспаренных электронов мы можем сказать, что такой атом углерода может проявлять валентность, равную II.

Рис. 3. Электронное строение атома углерода в основном состоянии

Во всех органических веществах и некоторых неорганических соединениях углерод четырехвалентен. Такая валентность возможна только в возбужденном состоянии атома углерода, в которое он переходит при получении дополнительной энергии.

В возбужденном состоянии в атоме углерода распариваются 2s-электроны, один из которых переходит на свободную 2р-орбиталь. Четыре неспаренных электрона могут участвовать в образовании четырех ковалентных связей. Возбужденное состояние атома принято обозначать «звездочкой» (Рис. 4).

Рис. 4. Электронное строение атома углерода в возбужденном состоянии

Может ли азот иметь валентность, равную пяти – по числу его валентных электронов? Рассмотрим валентные возможности атома азота.

В атоме азота два электронных слоя, на которых расположено всего 7 электронов (Рис. 5).

    7N

Рис. 5. Электронная схема строения внешнего слоя атома азота

Азот может образовать три общие электронные пары с тремя другими электронами. Пара электронов на 2s-орбитали тоже может участвовать в образовании связи, но по другому механизму – донорно-акцепторному, образуя четвертую связь.

Распаривание 2s-электронов в атоме азота невозможно, т. к. на втором электронном слое нет d-подуровня. Поэтому высшая валентность азота равна IV.

Подведение итога урока

На уроке вы научились определять валентные возможности атомов химических элементов. В ходе изучения материала вы узнали, сколько атомов других химических элементов может присоединить к себе конкретный атом, а также почему элементы проявляют разные значения валентности.

Список литературы

  1. Новошинский И.И., Новошинская Н.С. Химия. Учебник для 10 класса общеобр. учрежд. Профильный уровень. – М.: ООО «ТИД «Русское слово – РС», 2008. (§ 9)
  2. Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учеб. для общеобраз. учрежд.: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2010. (§ 5)
  3. Радецкий А.М. Химия. Дидактический материал. 10–11 классы. – М.: Просвещение, 2011.
  4. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. – М.: РИА «Новая волна»: Издатель Умеренков, 2008. (с. 8)

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме) (Источник).
  2. Электронная версия журнала «Химия и жизнь» (Источник).

Домашнее задание

  1. с. 30 №№ 2.41, 2.43 из Сборника задач и упражнений по химии для средней школы (Хомченко И.Д.), 2008.
  2. Запишите электронные схемы строения атома хлора в основном и возбужденном состояниях.
  3. Сколько валентных электронов в атоме: а) бериллия; б) кислорода; в) серы?

Источник: https://interneturok.ru/lesson/chemistry/11-klass/bstroenie-atoma-periodicheskij-zakonb/valentnye-vozmozhnosti-atomov-himicheskih-elementov

Валентность химических элементов: таблица или схема постоянной валентности в соединениях и как ее определить по формулам в 8 классе

Валентное состояние химические связи атомов элементов. Что такое валентность: как определять и как использовать. Что мы узнали

20.12.2019

Валентность химических элементов – это способность у атомов хим. элементов образовывать некоторое число химических связей. Принимает значения от 1 до 8 и не может быть равна 0.

Определяется числом электронов атома затраченых на образование хим. связей с другим атомом. Валентность это реальная величина. Обозначается римскими цифрами (I ,II, III, IV, V, VI, VII, VIII).

Валентность химических элементов (Таблица)

Как можно определить валентность в соединениях:

  • Валентность водорода (H) постоянна всегда 1. Отсюда в соединении H2O валентность O равна 2.
  • Валентность кислорода (O) постоянна всегда 2. Отсюда в соединении СО2 валентность С равно 4.
  • Высшая валентность всегда равна № группы.
  • Низшая валентность равна разности между числом 8 (количество групп в Таблице Менделеева) и номером группы, в которой находится элемент.
  • У металлов в подгруппах А таблицы Менделеева, валентность = № группы.
  • У неметаллов обычно две валентности: высшая и низшая.

Валентность химических элементов может быть постоянной и переменной. Постоянная в основном у металлов главных подгрупп, переменная у неметаллов и металлов побочных подгруп.

Таблица валентности химических элементов

Атомный №Химический элементСимволВалентность химических элементовПримеры соединений
1Водород / HydrogenHIHF
2Гелий / HeliumHeотсутствует
3Литий / LithiumLiILi2O
4Бериллий / BerylliumBeIIBeH2
5Бор / BoronBIIIBCl3
6Углерод / CarbonCIV, IICO2, CH4
7Азот / NitrogenNIII, IVNH3
8Кислород / OxygenOIIH2O, BaO
9Фтор / FluorineFIHF
10Неон / NeonNeотсутствует
11Натрий / SodiumNaINa2O
12Магний / MagnesiumMgIIMgCl2
13Алюминий / AluminumAlIIIAl2O3
14Кремний / SiliconSiIVSiO2, SiCl4
15Фосфор / PhosphorusPIII, VPH3, P2O5
16Сера / SulfurSVI, IV, IIH2S, SO3
17Хлор / ChlorineClI, III, V, VIIHCl, ClF3
18Аргон / ArgonArотсутствует
19Калий / PotassiumKIKBr
20Кальций / CalciumCaIICaH2
21Скандий / ScandiumScIIISc2S3
22Титан / TitaniumTiII, III, IVTi2O3, TiH4
23Ванадий / VanadiumVII, III, IV, VVF5, V2O3
24Хром / ChromiumCrII, III, VICrCl2, CrO3
25Марганец / ManganeseMnII, III, IV, VI, VIIMn2O7, Mn2(SO4)3
26Железо / IronFeII, IIIFeSO4, FeBr3
27Кобальт / CobaltCoII, IIICoI2, Co2S3
28Никель / NickelNiII, III, IVNiS, Ni(CO)4
29Медь / CopperСuI, IICuS, Cu2O
30Цинк / ZincZnIIZnCl2
31Галлий / GalliumGaIIIGa(OH)3
32Германий / GermaniumGeII, IVGeBr4, Ge(OH)2
33Мышьяк / ArsenicAsIII, VAs2S5, H3AsO4
34Селен / SeleniumSeII, IV, VI,H2SeO3
35Бром / BromineBrI, III, V, VIIHBrO3
36Криптон / KryptonKrVI, IV, IIKrF2, BaKrO4
37Рубидий / RubidiumRbIRbH
38Стронций / StrontiumSrIISrSO4
39Иттрий / YttriumYIIIY2O3
40Цирконий / ZirconiumZrII, III, IVZrI4, ZrCl2
41Ниобий / NiobiumNbI, II, III, IV, VNbBr5
42Молибден / MolybdenumMoII, III, IV, V, VIMo2O5, MoF6
43Технеций / TechnetiumTcI — VIITc2S7
44Рутений / RutheniumRuII — VIIIRuO4, RuF5, RuBr3
45Родий / RhodiumRhI, II, III, IV, VRhS, RhF3
46Палладий / PalladiumPdI, II, III, IVPd2S, PdS2
47Серебро / SilverAgI, II, IIIAgO, AgF2, AgNO3
48Кадмий / CadmiumCdIICdCl2
49Индий / IndiumInIIIIn2O3
50Олово / TinSnII, IVSnBr4, SnF2
51Сурьма / AntimonySbIII, IV, VSbF5, SbH3
52Теллур / TelluriumTeVI, IV, IITeH2, H6TeO6
53Иод / IodineII, III, V, VIIHIO3, HI
54Ксенон / XenonXeII, IV, VI, VIIIXeF6, XeO4, XeF2
55Цезий / CesiumCsICsCl
56Барий / BariumBaIIBa(OH)2
57Лантан / LanthanumLaIIILaH3
58Церий / CeriumCeIII, IVCeO2 , CeF3
59Празеодим / PraseodymiumPrIII, IVPrF4, PrO2
60Неодим / NeodymiumNdIIINd2O3
61Прометий / PromethiumPmIIIPm2O3
62Самарий / SamariumSmII, IIISmO
63Европий / EuropiumEuII, IIIEuSO4
64Гадолиний / GadoliniumGdIIIGdCl3
65Тербий / TerbiumTbIII, IVTbF4, TbCl3
66Диспрозий / DysprosiumDyIIIDy2O3
67Гольмий / HolmiumHoIIIHo2O3
68Эрбий / ErbiumErIIIEr2O3
69Тулий / ThuliumTmII, IIITm2O3
70Иттербий / YtterbiumYbII, IIIYO
71Лютеций / LutetiumLuIIILuF3
72Гафний / HafniumHfII, III, IVHr3, HfCl4
73Тантал / TantalumTaI — VTaCl5, TaBr2, TaCl4
74Вольфрам / TungstenWII — VIWBr6, Na2WO4
75Рений / RheniumReI — VIIRe2S7, Re2O5
76Осмий / OsmiumOsII — VI, VIIIOsF8, OsI2, Os2O3
77Иридий / IridiumIrI — VIIrS3, IrF4
78Платина / PlatinumPtI, II, III, IV, VPt(SO4)3, PtBr4
79Золото / GoldAuI, II, IIIAuH, Au2O3, Au2Cl6
80Ртуть / MercuryHgIIHgF2, HgBr2
81Талий / ThalliumTlI, IIITlCl3, TlF
82Свинец / LeadPbII, IVPbS, PbH4
83Висмут / BismuthBiIII, VBiF5,  Bi2S3
84Полоний / PoloniumPoVI, IV, IIPoCl4, PoO3
85Астат / AstatineAtнет данных
86Радон / RadonRnотсутствует
87Франций / FranciumFrI
88Радий / RadiumRaIIRaBr2
89Актиний / ActiniumAcIIIAcCl3
90Торий / ThoriumThII, III, IVThO2, ThF4
91Проактиний / ProtactiniumPaIV, VPaCl5,  PaF4
92Уран / UraniumUIII, IVUF4, UO3
93НептунийNpIII — VINpF6, NpCl4
94ПлутонийPuII, III, IVPuO2, PuF3, PuF4
95АмерицийAmIII — VIAmF3, AmO2
96КюрийCmIII, IVCmO2, Cm2O3
97БерклийBkIII, IVBkF3, BkO2
98КалифорнийCfII, III, IVCf2O3
99ЭйнштейнийEsII, IIIEsF3
100ФермийFmII, III
101МенделевийMdII, III
102НобелийNoII, III
103ЛоуренсийLrIII
НомерЭлементСимволВалентность химических элементовПример

Источник: https://rgiufa.ru/ege/kak-opredelit-valentnost-himicheskih-elementov.html

Урок 6. Валентность – HIMI4KA

Валентное состояние химические связи атомов элементов. Что такое валентность: как определять и как использовать. Что мы узнали
Архив уроков › Химия 8 класс

В уроке 6 «Валентность» из курса «Химия для чайников» дадим определение валентности, научимся ее определять; рассмотрим элементы с постоянной и переменной валентностью, кроме того научимся составлять химические формулы по валентности. Напоминаю, что в прошлом уроке «Химическая формула» мы дали определение химическим формулам и их индексам, а также выяснили различия химических формул веществ молекулярного и немолекулярного строения.

Вы уже знаете, что в химических соединениях атомы разных элементов находятся в определенных числовых соотношениях. От чего зависят эти соотношения?

Рассмотрим химические формулы нескольких соединений водорода с атомами других элементов:

Нетрудно заметить, что атом хлора связан с одним атомом водорода, атом кислорода — с двумя, атом азота — с тремя, а атом углерода — с четырьмя атомами водорода.

В то же время в молекуле углекислого газа СО2 атом углерода связан с двумя атомами кислорода. Из этих примеров видно, что атомы обладают разной способностью соединяться с другими атомами.

Такая способность атомов выражается с помощью численной характеристики, называемой валентностью.

Валентность — численная характеристика способности атомов данного элемента соединяться с другими атомами.

Поскольку один атом водорода может соединиться только с одним атомом другого элемента, валентность атома водорода принята равной единице. Иначе говорят, что атом водорода обладает одной единицей валентности, т. е. он одновалентен.

Валентность атома какого-либо другого элемента равна числу соединившихся с ним атомов водорода. Поэтому в молекуле HCl у атома хлора валентность равна единице, а в молекуле H2O у атома кислорода валентность равна двум.

По той же причине в молекуле NH3 валентность атома азота равна трем, а в молекуле CH4 валентность атома углерода равна четырем.

Если условно обозначить единицу валентности черточкой |, вышесказанное можно изобразить схематически:

Следовательно, валентность атома любого элемента есть число, которое показывает, со сколькими атомами одновалентного элемента связан данный атом в химическом соединении.

Численные значения валентности обозначают римскими цифрами над символами химических элементов:

Определение валентности

Однако водород образует соединения далеко не со всеми элементами, а вот кислородные соединения есть почти у всех элементов. И во всех таких соединениях атомы кислорода проявляют валентность, равную двум. Зная это, можно определять валентности атомов других элементов в их бинарных соединениях с кислородом. (Бинарными называются соединения, состоящие из атомов двух химических элементов.)

Чтобы это сделать, необходимо соблюдать простое правило: в химической формуле вещества суммарные числа единиц валентности атомов каждого элемента должны быть одинаковыми.

Так, в молекуле воды H2O общее число единиц валентности двух атомов водорода равно произведению валентности одного атома на соответствующий числовой индекс в формуле:

Так же определяют число единиц валентности атома кислорода:

По величине валентности атомов одного элемента можно определить валентность атомов другого элемента. Например, определим валентность атома углерода в молекуле углекислого газа СО2:

Согласно вышеприведенному правилу х·1 = II·2, откуда х = IV.

Существует и другое соединение углерода с кислородом — угарный газ СО, в молекуле которого атом углерода соединен только с одним атомом кислорода:

В этом веществе валентность углерода равна II, так как х·1 = II·1, откуда х = II:

Постоянная и переменная валентность

Как видим, углерод соединяется с разным числом атомов кислорода, т. е. имеет переменную валентность. У большинства элементов валентность — величина переменная. Только у водорода, кислорода и еще нескольких элементов она постоянна (см. таблицу).

Составление химических формул по валентности

Зная валентность элементов, можно составлять формулы их бинарных соединений. Например, необходимо записать формулу кислородного соединения хлора, в котором валентность хлора равна семи. Порядок действий здесь таков.

Еще один пример. Составим формулу соединения кремния с азотом, если валентность кремния равна IV, а азота — III.

Записываем рядом символы элементов в следующем виде:

Затем находим НОК валентностей обоих элементов. Оно равно 12 (IV·III).

Определяем индексы каждого элемента:

Записываем формулу соединения: Si3N4.

В дальнейшем при составлении формул веществ не обязательно указывать цифрами значения валентностей, а необходимые несложные вычисления можно выполнять в уме.

Краткие выводы урока:

  1. Численной характеристикой способности атомов данного элемента соединяться с другими атомами является валентность.
  2. Валентность водорода постоянна и равна единице. Валентность кислорода также постоянна и равна двум.
  3. Валентность большинства остальных элементов не является постоянной. Ее можно определить по формулам их бинарных соединений с водородом или кислородом.

Надеюсь урок 6 «Валентность» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Источник: https://himi4ka.ru/arhiv-urokov/urok-6-valentnost.html

Метод валентных связей

Валентное состояние химические связи атомов элементов. Что такое валентность: как определять и как использовать. Что мы узнали

Метод валентных связей (локализованных электронных пар) предполагает, что каждая пара атомов в молекуле удерживается вместе при помощи одной или нескольких общих электронных пар. Поэтому химическая связь представляется двухэлектронной и двухцентровой, т.е. локализована между двумя атомами. В структурных формулах соединений обозначается черточкой:

H-Cl, H-H, H-O-H

Рассмотрим в свете Метода ВС, такие особенности связи, как насыщаемость, направленность и поляризуемость.

Валентность атома — определяется числом неспаренных (валентных) электронов, способных принять участие в образовании химической связи. Валентность выражается небольшими целыми числами и равна числу ковалентных связей.

Валентность элементов, проявляющуюся в ковалентных соединениях, часто называют ковалентностью. Некоторые атомы имеют переменную валентность, например углерод в основном состоянии имеет 2 неспаренных электрона и будет двух валентен.

При возбуждении атома, возможно распарить другие два спаренных электрона и тогда атом углерода станет четырех валентен:

электронное строение атома углерода

Возбуждение атома до нового валентного состояния требует затраты энергии, которая компенсируется выделяемой при образовании связей энергией.

Направленность ковалентной связи

Взаимное перекрывание облаков может происходить разными способами, ввиду их различной формы. Различают σ-, π- и δ-связи.

Сигма – связи образуются при перекрывании облаков вдоль линии, проходящей через ядра атомов. Пи – связи возникают при перекрывании облаков по обе стороны от линии, соединяющей ядра атомов. Дельта – связи осуществляются при перекрывании всех четырех лопастей d – электронных облаков, расположенных в параллельных плоскостях.

образование химической связи

σ– связь может возникнуть при перекрывании вдоль линии, соединяющей ядра атомов в следующих орбиталей: s— s -, s— р-, р – р-, d— d -орбиталей , а также  d— s-, d—  р– орбиталей. σ– связь обладает свойствами локализованной двухцентровой связи, каковой она и является.

π– связь может образовываться при перекрывании по обе стороны от линии, соединяющей ядра атомов следующих орбиталей: р—р-, р—d-, d—d-, f—p-, f—d— и f—f— орбиталей.

Итак, s— элементы способны к образованию только σ– связи, р— элементы — σ– и π– связи, d— элементы — σ–, π– и δ‑ связи, а f— элементы — σ– , π– , δ-связи. При совместном образовании π– и σ- связей получается двойная связь. Если же одновременно возникают две π–и σ- связь, то образуется тройная связь. Количество возникших связей между атомами, называется кратностью связи.

При образовании связи с помощью  s— орбиталей, ввиду их сферической формы, не возникает какого-либо преимущественного направления в пространстве, для наиболее выгодного образования ковалентных связей. В случае же р– орбиталей, электронная плотность распределена неравномерно, поэтому возникает определенное направление, по которому образование ковалентной связи наиболее вероятно.

Гибридизация атомных орбиталей

Рассмотрим пример. Представим, что четыре атома водорода соединились с атомом углерода и образовалась молекула метана CH4.

Рисунок показывает что происходит, но не объясняет, как ведут себя s—  и р— орбитали, при образовании таких соединений. Хотя р— орбиталь имеет две части, развернутые друг относительно друга, но она может образовывать только одну связь.

В итоге, можно предположить, что в молекуле метана один атом водорода присоединяется к 2s— орбитали углерода, остальные – к 2р— орбитали. Тогда, каждый атом водорода будет находиться по отношению к другому под углом 90°, но это не так.

Электроны отталкиваются друг от друга и расходятся на большее расстояние. Что же на самом деле происходит?

В результате, все орбитали объединяются, перестраиваются и образуют 4 эквивалентные гибридные орбитали, которые направлены к вершинам тетраэдра.

Каждая из гибридных орбиталей содержит некий вклад 2s— орбитали и некоторые вклады  2р— орбиталей.

Поскольку 4 гибридные орбитали образованы одной 2s— и тремя 2р— орбиталями, то такой способ гибридизации называют sp3-гибридизацией.

sp3-гибридизация орбиталей в молекуле метана

Как видно из рисунка, конфигурация гибридных орбиталей позволяет четырем атомам вдорода образовать ковалентные связи с атомом углерода, при этом орбитали будут располагаться относительно друг друга под углом 109,5°.

Такой же тип гибридизации присутствует в таких молекулах, как NH3, H2O.

На одной из sp3-гибридных орбиталей, в молекуле NH3, находится неподеленная электронная пара, а три остальные орбитали используются для соединения с атомами водорода.

В молекуле H2O неподеленными электронными парами заняты две гибридные орбитали атома кислорода, а две другие используются для связывания с атомами водорода.

Гибридизация орбиталей молекул метана, аммиака, воды

Число гибридных орбиталей определяется числом одинарных связей, а также количеством неподеленных электронных пар в молекуле. Эти электроны находятся на гибридных орбиталях. Когда же происходит перекрывание негибридных орбиталей двух атомов, то образуется кратная связь. Например, в молекуле этилена связь реализуется следующим образом:

sp2-гибридизация атомов этилена

Плоское расположение трех связей вокруг каждого атома углерода дает основание предположить, что в данном случае реализуется sp2-гибридизация ( гибридные орбитали образованы одной 2s— и двумя 2р— орбиталями). При этом одна 2р— орбиталь остается неиспользованной (негибридной). Орбитали будут располагаться относительно друг друга под углом 120°.

Таким же образом, в молекуле ацетилена образуется тройная связь. В данном случае происходит sp-гибридизация атомов, т.е. гибридные орбитали образованы одной 2s— и одной 2р— орбиталями, а две 2р— орбитали являются негибридными. Орбитали располагаются относительно друг друга под углом 180°

sp-гибридизация атомов ацетилена

Ниже приведены примеры геометрического расположения гибридных орбиталей.

Набор атомных орбиталейНабор гибридных орбиталейГеометрическое расположение  гибридных орбиталейПримеры
s,pspЛинейное (угол 180°)  Be(CH3)2, HgCl2  MgBr2, СаН2, ВаF2, C2H2
s,p,psp2Плоское тригональное (угол 120°)BF3,GaCl3, InBr3,TeI3, C2H4
s,p,p,psp3Тетраэдрическое (угол 109,5°)CH4, AsCl4—, TiCl4, SiCl4, GeF4
s,p,p,dsp2dПлоскоквадратнoe (угол 90°)Ni(CO)4, [PdCl4]2—
s,p,p,p,dsp3dТригонально-бипирамдальное (углы 120° и 90°)PF5, PCl5, AsF5
s,p,p,p,d,dsp3d2Октаэдрическое ( угол 90°)SF6, Fe(CN)63-, CoF63-

Пространственное расположение гибридных орбиталей различных типов

Источник: http://zadachi-po-khimii.ru/obshaya-himiya/metod-valentnyx-svyazej.html

WikiMedForum.Ru
Добавить комментарий