Звуки в открытом космосе. Могут ли люди слышать звуки в космосе. Звук, который можно увидеть

Можно ли услышать звуки в космосе?

Звуки в открытом космосе. Могут ли люди слышать звуки в космосе. Звук, который можно увидеть

В фантастических фильмах и сериалах можно часто видеть потрясающие взрывы космических кораблей, сопровождающиеся характерными звуками. Но работает ли это в реальности? Может ли человек что-то услышать в космосе?

Если ответить коротко: нет. Нет, вы не услышите взрыв корабля или крик вашего товарища-космонавта, который зовет вас из кратера, куда случайно провалился (конечно, если в его шлеме нет специальной системы связи).

Однако из-за популяризации в кино многие думают, что в космосе можно услышать звуки. Например, вы могли даже слышать звуки планет, записанные космическими аппаратами. Но и это не совсем верно.

На самом деле, инструменты фиксируют определенные процессы в атмосферах (или кольцах), после чего переводят их в то, что мы могли бы услышать в звуковом формате. Так что нет, планеты не гудят и не поют в космическом мраке.

Немного о звуке

Если сравнивать с чем-то явление космического шума, то ближе всего стоит к тепловому. Образуется на частотах выше 15 МГц, если антенны направлены к нашей звезде или любым мощным областям вроде галактического центра. Удаленные квазары и прочие плотные тела посылают ЭМ-волны. Также радиоприемники способны зафиксировать событие метеоритного падения. Еще одна разновидность – реликтовое излучение. Это остаточный шепот Большого Взрыва, распространенный однородно по всему пространству. Пик находится в микроволновом диапазоне.

Звуки космоса – Звук радиоволн при взаимодействии с атмосферой Земли

Радиоволны способны практически без потерь перемещаться на больших дистанциях в пределах земной атмосферы. Именно из-за этого их используют в качестве удобных информационных транспортировщиков. //v-kosmose.com/wp-content/uploads/2017/08/693857main_emfisis_chorus_1.mp3

Звуки космоса: Quindar – Звук #1

Вы можете без труда понять, где предоставлена запись переговоров астронавтов и пункта земного приема из-за Quindar tones. Это писки на высоких частотах, которые появляются в паузах между словами.//v-kosmose.com/wp-content/uploads/2017/08/578628main_hskquindar.mp3

Звуки космоса: Quindar – Звук #2

Если вы когда-нибудь слушали старые записи миссий Аполлона, то сталкивались с «квиндарскими тонами». Это своего рода особенный метод включения/отключения при связи коммуникатора и экипажа корабля. Подобная техника позаимствована из принципа функционирования двусторонней рации.//v-kosmose.com/wp-content/uploads/2017/08/578629main_hawquindar.mp3

Звуки космоса: Спутник – Бип-Бип

В 1954 году по советскому радио прозвучало сообщение от Юрия Левитана. Он говорил, что благодаря усердной работе научных сотрудников удалось создать первый искусственный земной спутник. Запуск совершили 4 октября, а позывные доносились в виде «Бип! Бип!».//v-kosmose.com/wp-content/uploads/2017/08/578626main_sputnik-beep.mp3

Звуки космоса: Кассини – радиоэмиссия Сатурна

Во время миссии Кассини аппарату удалось записать радиосигналы, раздававшиеся с участков на северном и южном полюсах Сатурна.//v-kosmose.com/wp-content/uploads/2017/08/584795main_saturn_radio_waves.mp3

Звуки космоса: Вояджер – молнии на Юпитере

Удивительно, но на этом гиганте присутствуют активные молнии. Это явление отображает стремительную транспортировку частичек с электрическим зарядом с одной точки на другую. Чтобы произошло заметное «сверкание», нужно разделить заряды в пределах облака. В земных условиях это происходит из-за ударов капель воды в жидком и замороженном состояниях. В Юпитере также задействуется облачный лед. К этому выводу пришли из-за сделанного аппаратом Галилео снимка. Яркие вспышки замечены на позиции водяных облаков. Они освещают аммиачные облачные структуры, расположенные ниже. Важно помнить, что эти молнии по нагреву превосходят земные.//v-kosmose.com/wp-content/uploads/2017/08/603921main_voyager_jupiter_lightning.mp3

Звуки космоса: Вояджер – звуки межзвездной плазмы

Вояджер-1 известен тем, что этому аппарату удалось покинуть пределы нашей системы и записать мелодию плазмы. Об этом с огромной радостью сообщил представитель команды Дон Гарнетт.//v-kosmose.com/wp-content/uploads/2017/08/interstellar.mp3

Звуки космоса: Sturdust -Пролет рядом с кометой Темпеля-1

Этот аппарат стартовал к своей цели в 1999 году. Первые кометные образцы удалось раздобыть в 2004 году на поверхности Вильда (81P/Wild 2). Ученые получили капсулу через 2 года. Сам же механизм продолжил полет и в 2007 году функционировал уже под наименованием Stardust-NExT. Новым объектом стала комета Темпель-1. Но это будет последним заданием, так как топливный запас уже на исходе.//v-kosmose.com/wp-content/uploads/2017/08/598980main_stardust_tempel1.mp3

Звуки космоса:  Кеплер – свет от звезды KIC7671081B, преобразованный в звук

Мы имеем возможность наслаждаться не только планетарными мелодиями, но и звездными. Эту запись сделал телескоп Кеплер.//v-kosmose.com/wp-content/uploads/2017/08/578359main_kepler_star_KIC7671081B.mp3

Звуки космоса: Кеплер – свет от звезды KIC7671081B, преобразованный в звук

Уникальный космический телескоп сумел обнаружить огромное количество пространственных объектов. Но нам удалось даже больше. Оказывается, можно превратить звездное мерцание в мелодию и услышать пение звезды. В итоге, мы располагаем голосами KIC7671081B и KIC12268220C.//v-kosmose.com/wp-content/uploads/2017/08/578358main_kepler_star_KIC12268220C.mp3

Звуки космоса: Юнона – код “ПРИВЕТ”, полученный с Земли

В 2011 году к Юпитеру отправили автоматическую станцию Юнона. Это был второй этап в границах проекта «Новых рубежей». В 2016 году миссия закрепилась на орбитальном пути и получила выход на полярную шапку. Исследователи планировали рассмотреть гравитационные и магнитные поля, а также проверить, обладает ли планета твердым ядром.//v-kosmose.com/wp-content/uploads/2017/08/RingTone01_Longer.mp3

Звуки космоса: Кассини – звук Энцелада

В данный момент Кассини близится к завершению своей миссии и путешествует по кольцам. Но аппарат также сумел записать звуки Сатурна на прибор RPWS. Формируются плазменными волнами из-за контакта частичек в кольце D.//v-kosmose.com/wp-content/uploads/2017/08/584796main_enceladus.mp3

Звуки космоса: Плазмасферический свист

На огромных высотах царствуют космические лучи. Их высокий энергетический запас опасен, потому что способен не только нанести вред спутникам, но и угрожает здоровью всех, кто выходит в открытое пространство. Это влияние именуют плазмасферическим свистом. ЭМ-волны формируют звук, напоминающий белый шум.//v-kosmose.com/wp-content/uploads/2017/08/hiss.wav

Звуки космоса: Волны в плазме

Это ЭМ-волны, перемещающиеся в плазматической среде из-за упорядоченного движения заряженных частичек. Особенно важное значение придается ЭМ-влиянию между частичками, поэтому ЭМ-свойства плазмы основываются на присутствии внешних полей и волновых характеристик.//v-kosmose.com/wp-content/uploads/2017/08/plasmawaves-chorus.mp3

Чтобы разобраться в этом вопросе, нужно немного понимать физику звука. Звук распространяется по воздуху в виде волн. Например, когда вы говорите, вибрация ых связок сжимает воздух вокруг них.

Этот сжатый воздух перемещает воздух вокруг себя и происходит транспортировка звуковых волн. В итоге, эти сжатия добираются к нашим ушам, а мозг уже интерпретирует активность в виде звука.

Если сжатие оказывается высокочастотным или перемещается слишком быстро, то уши воспринимают сигналы в виде свиста или визга. Если же частоты низкие или скорость медленная, то мы улавливаем гул или низкий тембр.

Существует важный момент: нельзя сжать звуковые волны без среды. Так вот в вакууме нет «среды», которая будет передавать звуковые волны. Конечно, существует вероятность, что в качестве среды могут срабатывать облака газа и пыли, но нам все равно не услышать потенциальные звуки. Они будут слишком высокими или низкими для наших ушей.

Да, вы можете попытаться снять скафандр возле пылевого и газового облака и прислушаться. Но в целях безопасности мы не советуем проводить этот тест.

А что насчет света?

Со световыми волнами (которые не являются радиоволнами) наблюдается иная картина. Они не нуждаются в среде для распространения. Поэтому свет может перемещаться, что позволяет нам видеть планеты, звезды и чужие галактики. А вот их звуки мы услышать не можем.

Космические зонды нас обманывают?

Здесь все сложнее. Еще в начале 90-х гг. НАСА удалось добыть 5 звуков из космоса. Вот только само объяснение, что это такое, было не совсем корректным. Многие посчитали, что эти записи отображают звучание самих планет.

Однако речь идет о контакте заряженных частиц в магнитосферах миров. Космические зонды провели измерения этих радиоволн и прочих электромагнитных колебаний, и превратили их в звуки.

Вот так выглядит реальность. Но это не мешает вам насладиться «звуками» планет на нашем сайте. В конце концов, эта интерпретация позволяет уловить сигналы с других миров, у каждого из которых наблюдается характерная и отличительная звуковая подпись.

Читайте нас на Яндекс.Дзен

Источник: //v-kosmose.com/mozhno-li-uslyshat-zvuki-v-kosmose/

Есть ли в космосе звук? Распространяется ли звук в космосе

Звуки в открытом космосе. Могут ли люди слышать звуки в космосе. Звук, который можно увидеть

Космос – это не однородное ничто. Между различными объектами есть облака газа и пыли. Они являются остатками после взрыва сверхновых и местом для формирования звезд. В некоторых областях этот межзвездный газ достаточно плотный, чтобы распространять звуковые волны, но они не восприимчивы для человеческого слуха.

Есть ли в космосе звук?

Когда объект движется – будь то вибрация гитарной струны или взрывающийся фейерверк – он воздействует на близлежащие молекулы воздуха, как бы толкая их. Эти молекулы врезаются в своих соседей, а те, в свою очередь, в следующие. Движение распространяется по воздуху подобно волне. Когда она достигает уха, человек воспринимает ее как звук.

Когда звуковая волна проходит сквозь воздушное пространство, его давление колеблется вверх и вниз, словно морская вода в шторм. Время между этими вибрациями называется частотой звука и измеряется в герцах (1 Гц – это одна осцилляция в секунду). Расстояние между пиками наивысшего давления называется длиной волны.

Звук может распространяться только в среде, в которой длина волны не больше среднего расстояния между частицами. Физики называют это «условно свободной дорогой» – среднее расстояние, которое молекула проходит после столкновения с одной и перед взаимодействием со следующей. Таким образом, плотная среда может передавать звуки с короткой длиной волны и наоборот.

Звуки с длинными волнами имеют частоты, которые ухо воспринимает как низкие тона.

В газе со средней длиной свободного пробега, превышающей 17 м (20 Гц), звуковые волны будут слишком низкочастотными, чтобы человек смог их воспринять. Они называются инфразвуками.

Если бы существовали инопланетяне с ушами, воспринимающими очень низкие ноты, они бы точно знали, слышны ли звуки в открытом космосе.

Песнь черной дыры

На расстоянии около 220 миллионов световых лет, в центре кластера из тысяч галактик, сверхмассивная черная дыра напевает самую низкую ноту, которую когда-либо слышала вселенная. На 57 октав ниже средней «до», что примерно на миллион миллиардов раз глубже, чем звук той частоты, которую человек может услышать.

Самый глубокий звук, который возможно уловить людям, имеет цикл около одного колебания каждые 1/20 секунды. У черной дыры в созвездии Персея цикл составляет около одного колебания каждые 10 миллионов лет.

Это стало известно в 2003 году, когда космический телескоп NASA «Чандра» обнаружил нечто в газе, заполняющем кластер Персея: концентрированные кольца света и темноты, похожие на рябь в пруду. Астрофизики говорят, что это следы невероятно низкочастотных звуковых волн. Более яркие – это вершины волн, где наибольшее давление на газ. Кольца темнее – это впадины, где давление ниже.

Горячий, намагниченный газ вращается вокруг черной дыры, похожий на воду, циркулирующую вокруг слива. Двигаясь, он создает мощное электромагнитное поле.

Достаточно сильное, чтобы ускорить газ возле края черной дыры практически до скорости света, превращая его в огромные всплески, называемые релятивистскими струями.

Они вынуждают газ повернуть на своем пути в сторону, и это воздействие вызывает жуткие звуки из космоса.

Они переносятся через кластер Персея в течение сотен тысяч световых лет от своего источника, но звук может путешествовать только до тех пор, пока достаточно газа для его перевозки.

Поэтому он останавливается на краю газового облака, заполняющего скопление галактик Персея. Это значит, что невозможно услышать его звук на Земле. Можно увидеть только влияние на газовое облако.

Это выглядит так, как если смотреть через пространство на звукоизолированную камеру.

Странная планета

Наша планета издает глубокий стон каждый раз, когда двигается ее кора. Тогда не остается сомнений: распространяются ли звуки в космосе. Землетрясение может создавать вибрации в атмосфере с частотой от одного до пяти Гц. Если оно достаточно сильное, то может посылать инфразвуковые волны через атмосферу в открытый космос.

Конечно, нет четкой границы, где атмосфера Земли заканчивается и начинается космос. Воздух просто постепенно становится тоньше, пока в конце концов не исчезает вовсе.

От 80 до 550 километров над поверхностью Земли длина свободного пробега молекулы составляет около километра. Это означает, что воздух на этой высоте примерно в 59 раз тоньше такого, при котором была бы возможность слышать звук.

Он способен лишь переносить длинные инфразвуковые волны.

Когда в марте 2011 года землетрясение магнитудой 9.0 потрясло северо-восточное побережье Японии, сейсмографы во всем мире зафиксировали, как его волны проходили сквозь Землю, а вибрации вызывали низкочастотные колебания в атмосфере.

Эти вибрации прошли весь путь до того места, где корабль Европейского космического агентства (Gravity Field) и стационарный спутник Ocean Circulation Explorer (GOCE) сравнивает гравитацию Земли на низкой орбите с отметкой 270 километров над поверхностью.

И спутнику удалось записать эти звуковые волны.

GOCE обладает очень чувствительными акселерометрами на борту, которые управляют ионным двигателем. Это помогает поддерживать спутник на стабильной орбите.

11 марта 2011 года акселерометры GOCE обнаружили вертикальное смещение в очень тонкой атмосфере вокруг спутника, а также волнообразные сдвиги в давлении воздуха, в момент распространения звуковых волн от землетрясения.

Двигатели спутника скорректировали смещение и сохранили данные, которые стали подобием записи инфразвука землетрясения.

Эта запись была засекречена в данных о спутнике до тех пор, пока группа ученых, возглавляемая Рафаэлем Ф. Гарсией, не опубликовала этот документ.

Первый звук во вселенной

Если бы была возможность вернуться в прошлое, примерно в первые 760 000 лет после Большого Взрыва, можно было бы узнать, есть ли в космосе звук. В это время Вселенная была настолько плотной, что звуковые волны могли свободно распространяться.

Примерно тогда же первые фотоны начинали путешествовать в космосе в качестве света. После всё наконец охладилось настолько, чтобы субатомные частицы конденсировались в атомы. До того, как произошло охлаждение, Вселенная была заполнена заряженными частицами – протонами и электронами – которые поглощали или рассеивали фотоны, частицы, составляющие свет.

Сегодня он достигает Земли как слабое свечение микроволнового фона, видимое только очень чувствительными радиотелескопами. Физики называют это реликтовым излучением. Это самый старый свет во вселенной. Он отвечает на вопрос, есть ли звук в космосе. Реликтовое излучение содержит запись древнейшей музыки вселенной.

Свет в помощь

Как свет помогает узнать, есть ли звук в космосе? Звуковые волны проходят сквозь воздух (или межзвездный газ) как колебания давления. Когда газ сжимается, становится жарче.

В космических масштабах это явление настолько интенсивно, что образуются звезды. А когда газ расширяется, он остывает.

Звуковые волны, распространяющиеся по ранней вселенной, вызывали слабые колебания давления в газовой среде, что, в свою очередь, оставляло слабые сбои температуры, отраженные в космическом микроволновом фоне.

Используя температурные изменения, физику Университета Вашингтона Джону Крамеру удалось восстановить эти жуткие звуки из космоса – музыку расширяющейся вселенной. Он умножил частоту в 1026 раз, чтобы человеческие уши смогли его услышать.

Так что никто действительно не услышит крика в космосе, но останутся звуковые волны, движущиеся сквозь облака межзвездного газа либо в разреженных лучах внешней атмосферы Земли.

Источник: //FB.ru/article/362761/est-li-v-kosmose-zvuk-rasprostranyaetsya-li-zvuk-v-kosmose

Почему мы не слышим звуки космоса?

Звуки в открытом космосе. Могут ли люди слышать звуки в космосе. Звук, который можно увидеть

Марсоход «Кьюриосити», запущенный в рамках программы NASA «Марсианская научная лаборатория», начал исследовать Красную планету почти семь лет назад. За это время марсоход проехал около 20 километров.

По земным меркам это немного, но если вспомнить, насколько сложно управлять аппаратом, передвигающимся по поверхности Марса, приходится признать: это огромное достижение ученых, инженеров и программистов, участвующих в проекте.

Но как именно работают «водители» марсохода? Об этом мы поговорили с Алексеем Малаховым, старшим научным сотрудником отдела ядерной планетологии Института космических исследований РАН, отвечающим за работу российского научного прибора ДАН на борту ровера.

В рамках этого проекта ИКИ активно взаимодействует с американской стороной, в том числе по вопросам выбора очередных целей для изучения.

Межпланетная связь

Это весьма неудобно: задержка между поступлением информации с камер достигает дюжины часов, в то время как для советских луноходов она составляла считанные секунды. Возникает вопрос: почему нельзя обеспечить постоянную связь через висящий над Марсом спутник? Ведь в окрестностях Земли есть спутники на геостационарной орбите, постоянно висящие над одной и той же точкой нашей планеты.

Для Марса такая орбита тоже есть, она называется ареостационарной. Но дело в том, что она находится на высоте около 17 тысяч километров над поверхностью планеты (большая полуось, или среднее расстояние от этой орбиты до центра планеты, составляет 20 428 километров).

Это значит, что ареостационарная орбита пролегает между орбитами Деймоса (большая полуось орбиты — 23 458 километров) и Фобоса (9 376 километров). Спутник связи, если его туда послать, окажется под воздействием гравитации сразу двух близких тел, «дергающих» его в противоположных направлениях.

Это обстоятельство, а также специфика распределения масс в разных точках Марса означают, что на ареостационарной орбите спутник должен будет включать двигатели для удержания своей орбиты раз в несколько дней, а не раз в несколько недель, как на аналогичной орбите у Земли. Иными словами, он или будет массивнее околоземного геостационарного аналога, или проживет совсем недолго.

Возможно, именно с этими трудностями связано то, что NASA, еще в 1999 году анонсировавшее развертывание спутников связи на ареостационарной орбите, так и не реализовало свои планы и даже ликвидировало соответствующий раздел на своем сайте.

Именно поэтому роль спутников связи на Марсе выполняют научно-исследовательские спутники, чья главная задача — картографировать поверхность Марса и собирать о ней другие данные. По словам Алексея Малахова, обеспечение связи с марсоходом для них — дополнительная нагрузка, по большому счету, не соответствующая их прямому назначению.

Но нормальной связи между «Кьюриосити» и Землей мешает не только все вышеперечисленное. Раз в два года Марс и Земля оказываются в положении, когда Солнце блокирует Красную планету от электромагнитных волн с Земли. Состояние это длится примерно месяц (в 2019 году оно придется на август-сентябрь), и, конечно, в течение всего этого времени управлять марсоходом или получать от него научные данные невозможно. Поэтому аппарат просто впадает в «спячку».

Стратегия для марсохода

Большие разрывы в связи означают, что «луноходный» подход (работа в реальном времени) для марсохода в принципе невозможен. Куда больше управление им похоже на пошаговую компьютерную стратегию.Обычно ситуация выглядит так. В во второй половине марсианского светового дня данные от «Кьюриосити» отправляются наземным станциям NASA, а от них — операторам.

Те рассматривают снимки объектов, окружающих марсоход (как правило, речь идет о черно-белых снимках относительно низкого разрешения с технических камер контроля перемещения), и выбирают наиболее интересные с научной точки зрения.

У миссии есть ведущий ученый, и под его руководством другие ученые, работающие с разными приборами, вырабатывают общую точку зрения на то, куда в данный момент лучше всего направить марсоход.

Как отмечает Алексей Малахов, иногда, естественно, возникают определенные разногласия: одним исследователям больше интересен один вариант действий, вторым — другой. Но все эти противоречия решаются в рабочем порядке.

Определившись с тем, что в данный момент окружает аппарат, ученые составляют для него план работы на следующий рабочий цикл — двигаться ли ему дальше или, например, сверлить грунт в заранее намеченной точке.

Общая циклограмма работы (точное расписание команд, подаваемых на исполнительные органы технических комплексов) складывается из предложений участников всех экспериментов а затем посылается антенной дальней космической связи на борт аппарата.

По словам Алексея Малахова, наземная команда управления подстраивается так, чтобы первый сеанс связи приходился на начало процесса планирования, а второй — на завершающий этап, когда циклограмма уже составлена и готова к отправке.

Как правило, план работы «Кьюриосити» определяется на несколько суток вперед, но после каждого сеанса связи в него могут вноситься уточнения, связанные с перемещением марсохода. Это неизбежно, потому что каждые сутки аппарат присылает новые снимки, на которых видны новые объекты — или новые препятствия, возникающие на его пути.

Кто ведет

«Кьюриосити» отличает от луноходов тем, что он в самом деле едет сам, без постоянного присмотра операторов с Земли, ведь управлять им напрямую с нашей планеты, учитывая ситуацию со связью, невозможно. Для этого на борту марсохода имеется компьютер с процессором частотой 200 мегагерц и оперативной памятью на 256 мегабайт.

Еще два гигабайта постоянной памяти размещены на флэш-накопителях. Управляет всем этим операционная система жесткого реального времени VxWorks.Это позволяет марсоходу двигаться в двух режимах, каждый из которых подразумевает не только простое следование командам, но и собственные действия. Первый из них — «слепое» вождение.

Его применяют, когда камеры аппарата на момент сеанса связи дают достаточно ясное изображение маршрута и наземные планировщики могли определить, нет ли на нем серьезных препятствий. После этого аппарату поступает команда проехать определенную дистанцию в определенном направлении «вслепую», то есть без использования камер.

Чтобы планетоход понял, что уже проехал заданную дистанцию, его компьютер следит за вращением колес, подсчитывая число полных поворотов (63 сантиметра пути на один полный поворот без буксовки).

Этот режим обеспечивает максимальную скорость движения «Кьюриосити» — до 0,04 метра в секунду, в 40 раз медленнее человека-пешехода на Земле.

При езде вслепую компьютер марсохода не проверяет по камерам, происходила ли по пути пробуксовка. Поэтому существует второй режим движения, связанный с огибанием препятствий. Его активируют, если маршрут не свободен для «слепой езды».

Он требует частых остановок для получения стереоизображения в направлении движения, после чего бортовое ПО марсохода анализирует «картинку». При этом ПО исходит из переменных, заданных планировщиками, например останавливается для анализа изображения через строго заданные промежутки времени.

Также операторы могут выбрать, какой именно тип решений примет аппарат, если обнаружит препятствие, — остановится до конца рабочего дня или продолжит движение.

Этот режим намного безопаснее первого. Два предшественника «Кьюриосити», марсоходы «Оппортьюнити» и «Спирит» при движении забуксовали, и «Спирит» в результате погиб. Причем он завяз в месте, которое на камерах выглядело безопасным. Но под тонкой коркой ровной поверхности скрывался сыпучий материал, и когда колеса планетохода пробили корку, выбраться аппарат уже не смог.

Понятно, почему «Кьюриосити» движется с такой осторожностью. Но за безопасность приходится платить: скорость марсохода в этом режиме падает до 0,02 метра в секунду, то есть в 80 раз медленнее земного пешехода.Для дополнительной безопасности есть еще третий режим — визуальной одометрии. В нем марсоход делает остановки и с помощью камер оценивает расстояние, пройденное им за время движения.

Затем он сравнивает его с числом оборотов колес. Если расстояние по камерам получается много меньше, чем то, что «насчитал» компьютер, значит, колеса буксуют практически на одном месте.

Операторы могут установить лимит допустимой пробуксовки, чтобы марсоход, наткнувшись на труднопроходимый участок, остановился и подождал следующего сеанса связи, дав операторам возможность принять решение о продолжении движения.

«Сто метров — максимум»

Может показаться, что система движения марсохода чрезмерно усложнена, что снижает скорость его движения и сбора научных данных. Однако для планетоходов это норма. Еще операторы «Лунохода-1» отмечали, что выбирали маршрут движения, избегая опасных элементов рельефа — крупных камней, на которых аппарат может опрокинуться, плохо проходимых участком с рыхлым реголитом и тому подобных.

Но луноходы напрямую управлялись человеком практически в режиме реального времени, а не ежесуточными циклограммами. Если их оператор допускал ошибку, ее можно было быстро исправить. В этом — одна из причин, по которой луноходы передвигались на порядок быстрее марсоходов.

Команда управления «Кьюриосити», по словам Алексея Малахова, «очень дотошно и аккуратно» следит за тем, чтобы правильно выбрать маршрут и избежать препятствий. Плюс к этому аппарат с помощью гироскопов следит за углом своего наклона относительно поверхности, чтобы в случае, если допустимый угол окажется превышен, немедленно остановить движение.

По этой же причине длина одного суточного передвижения марсохода никогда не планируется на Земле «вслепую» — дальше, чем позволяет увидеть очередной снимок. «Кьюриосити» редко преодолевает больше нескольких метров или нескольких десятков метров за один цикл планирования. «Сто метров — это максимум из того, что я вообще помню», — говорит Алексей Малахов.

И даже для таких коротких отрезков операторы используют много вспомогательных наземных инструментов, помогающих оценить опасность столкновения с непроходимым препятствием, вплоть до 3D-стереомоделирования марсианской поверхности.

Может возникнуть вопрос: почему на марсоход нельзя поставить такой же мощный искусственный интеллект, как у беспилотников Waymo, чтобы он самостоятельно планировал маршрут? Кажется, это позволило бы быстрее двигаться от точки к точке.На это можно ответить так.

Семь лет назад, когда «Кьюриосити» готовился к старту с земли, успехи искусственного интеллекта в беспилотном вождении еще не были так велики, как сегодня. Но главное, хотя «Кьюриосити» и является самым мощным марсоходом в истории, его мощность не превышает 110 ватт. Это в полтора раза ниже электрической мощности советских луноходов.

При движении ему необходимо снабжать энергией несколько электромоторов, камеры и научные инструменты. Для нужд компьютера остается не больше десятка ватт. Типичные компьютеры современных беспилотных авто требуют 500 ватт.

К тому же электроника планетоходов должна быть устойчивой к жесткому радиационному воздействию, а это тоже накладывает ограничения на ее производительность по сравнению с обычной «земной».

Связано это с тем, что частицы космических лучей, проходя сквозь полупроводник, оставляют за собой шлейф из свободных носителей заряда, провоцируя возникновение электрон-дырочных пар, способных переключить транзистор в неправильное состояние.

Чем меньше транзистор, тем меньший заряд переключает его состояние, поэтому самые компактные и быстрые транзисторы в космосе надежно не работают.Наконец, вспомним, что земные «беспилотники» на улицах все еще ездят либо с водителями-инженерами за рулем, либо с инженером на заднем сидении, страхующим автомобиль с помощью планшета и способным в любой момент остановить машину, если автопилот даст сбой.По мнению Алексея Малахова, настоящий искусственный интеллект для беспилотного вождения планетоходов появится не раньше, чем подобные системы без каких бы то ни было ограничений приживутся на Земле. Слишком высоки ставки — транспортное средство стоимостью 2,5–3 миллиарда долларов необходимо оградить от малейшего риска попасть в ДТП.

Вечная батарейка

Ограниченные энергетические возможности марсохода диктуются тем, что он питается от РИТЭГ — радиоизотопного термоэлектрического генератора. РИТЭГ состоит из 4,8 килограмма диоксида плутония-238, а кроме того — термопары и защитного кожуха.

Общая масса РИТЭГ — 45 килограмм, но его мощность не превышает 110 ватт. Это значит, что для движения марсоходу желательно накапливать запас энергии.

С этой целью он снабжен литиевыми батареями общей емкость 42 ампер-часа (сходные по емкости можно найти в электровелосипедах).

У операторов марсохода есть четкие критерии, ниже какого уровня они не имеют права опускать заряд батареи. И если они видят, что «Кьюриосити» приблизился к этому минимуму, то погружают аппарат в сон, чтобы он накопил энергии и смог ехать дальше.

Необходимость накапливать энергию перед движением, а также тот факт, что ночью на Марсе камеры нормально работать не могут, заставляют «Кьюриосити» примерно половину марсианского сола (марсианских суток) проводить во сне.

Кроме того, спячка длиной в месяц неизбежна каждые два года, когда Марс находится по другую сторону от Солнца и связи с марсоходом нет.Все же нельзя не отметить, что использование РИТЭГ, несмотря на все его ограничения по мощности, — настоящая революция для планетоходов. Еще «Оппортьюнити» и «Спирит» использовали солнечные батареи.

Во время пылевых бурь на Марсе пиковая выработка энергии, выдаваемая фотоэлементами «Оппортьюнити» в полдень, падала с 800 до 128 ватт-часов, при этом в ночную половину суток они, разумеется, не работали.Из-за этого аппараты на долгие недели впадали в спячку в ожидании улучшения погодных условий.

К тому же, застряв в песке и потеряв возможности оптимальным образом сориентироваться по Солнцу за счет разворота корпуса, «Спирит» в итоге истратил запас энергии и перестал выходить на связь.

Кроме того, солнечные батареи просто не смогли бы придать подвижность по-настоящему тяжелому «Кьюриосити», чей вес составляет 900 килограмм — впятеро больше прежних марсоходов. Да и питать заметную научную нагрузку от солнечных батарей на Марсе, где слишком мало солнечного света, не получится. Научные приборы «Кьюриосити» имеют массу в 75 килограмм, тогда как у его предшественников их вес не превышал пяти килограмм.

Наконец, фотоэлементы как источник энергии заметно повышают вероятность потери марсохода.

Сильная песчаная буря может занести солнечные батареи планетохода пылью, и в результате даже после того, как буря закончится, они не смогут выдавать полную мощность. РИТЭГ это не грозит.

Как говорит Алексей Малахов: «Эта батарейка надолго переживет все прочее в “Кьюриосити”, потому что марсоход начнет ломаться в других местах».

Источник: //pikabu.ru/story/pochemu_myi_ne_slyishim_zvuki_kosmosa_5879596

Как НАСА записывает звук, если звук не распространяется в космосе?

Звуки в открытом космосе. Могут ли люди слышать звуки в космосе. Звук, который можно увидеть

НАСА зарегистрировало волны магнитного и электрического поля, связанные с космическими событиями, и перевело эти данные в слышимый человеком диапазон.

Есть бесчисленные вопросы о космосе, которые преследовали ученых на протяжении веков. Чтобы ответить на некоторые из них, мы послали орбитальные аппараты, космические корабли, а иногда даже людей, чтобы собрать образцы и сделать наблюдения, но как вы изучаете то, что не видите?

Люди, естественно, способны слышать и видеть только в определенных конкретных частотах и ​​длинах волн. Однако в космосе множество волн, которые находятся за пределами нашего узкого восприятия, так как же мы их изучаем?

Мы переводим, переделываем и адаптируем их в соответствии с нашими потребностями, чтобы мы могли наблюдать и анализировать их. Науку просто невозможно остановить!

Почему звук не может путешествовать в космосе?

Звуковые волны – это не что иное, как колебания воздуха. Когда эти вибрации находятся в диапазоне от 20 Гц до 20 кГц, мы можем их услышать!

Звуковые волны в основном распространяются путем вибрации частиц в среде, т. е. молекул воздуха. Эти колебания передаются последовательным частицам в среде, что означает, что звуковые волны не могут перемещаться без среды. Причина, по которой мы не можем слышать звук в пространстве, обычно связана с отсутствием такой среды.

Мы можем утверждать, что в космосе есть облака газов, которые могут действовать как среды, но газы не присутствуют равномерно по всему пространству. Кроме того, газы обычно менее плотны в космосе, что означает, что между частицами слишком большие расстояния, поэтому вибрации не могут эффективно распространяться.

Проще говоря, звук не может путешествовать в космосе.

Как ученые слышат звуки Вселенной?

Начнем с того, что ученые фактически не могут “слышать” космические звуки, но у них есть средства для изучения космических волн, преобразуя их в звуковые волны.

Сонификация” – это преобразование любых не слуховых данных в звук и аналогично визуализации данных.

Метод преобразования называется Сонификации, если он соответствует определенным критериям:

  • Воспроизводимость, т. е. Важные элементы данных остаются неизменными, независимо от условий, при которых проводится Сонификация.
  • Данные должны обрабатываться ультразвуком таким образом, чтобы их могли различить даже неподготовленные слушатели.

Космос полно радиоволн, плазменных волн, магнитных волн, гравитационных волн и ударных волн, которые могут путешествовать в космосе без среды. Эти волны регистрируются приборами, которые могут воспринимать эти волны, и данные передаются на наземные станции, где волны кодируются звуком.

Любой слышимый звук имеет такие переменные, как частота, амплитуда и ритм. Различные пространственные волны согласуются с различными свойствами звука (частотой, амплитудой и т. д.) в разных пропорциях, чтобы получить звук.

НАСА имеет прибор под названием EMFISIS (Electrical and Magnetic Field Instrument Suite and Integrated Science), подключенный к двум спутникам Van Allen Probes, зондовый космический аппарат, который измеряет магнитные и электрические помехи, когда они окружают Землю.

Есть три электрических датчика, которые измеряют электрические возмущения и три магнетрона, которые измеряют колебания в магнитных полях. Некоторые из электромагнитных волн лежат в диапазоне слышимых частот, который служит для ученых основой для перевода оставшихся записанных частот в слышимый диапазон для интерпретации данных.

Эти знания о волнах и их тонах помогают нам понять схему, которой они следуют. Кроме того, это только волны, которые находятся вблизи атмосферы Земли.

Хотя научное сообщество уже давно бурлит вопросами, связанными с Солнцем и его недрами, мы также знаем, что ни один спутник или космический аппарат не может долететь до Солнца, не сгорев.

Научное наблюдение за солнцем также практически невозможно из-за его яркости.

Это оставляет нам возможность наблюдать полевые волны, которые окружают солнце, и естественные вибрации, которые возникают от солнца.

Поверхность солнца является конвективной из-за звуковых волн очень низкой амплитуды. НАСА создало солнечные звуки из данных, собранных в течение 40 дней с помощью гелиосферной обсерватории (SOHO) Michelson Doppler Imager (MDI). Эти данные были обработаны следующим образом:

  • Данные о допплеровской скорости, полученные из MDI (доплеровского тепловизора Майкельсона), были усреднены по солнечному диску Солнца.
  • Обработка проводилась таким образом, чтобы устранить эффекты движения космического аппарата и паразитные шумы.
  • Затем был использован фильтр для выбора чистых звуковых волн.
  • Наконец, данные были интерполированы, так что все недостающие места были покрыты.
  • Затем данные были масштабированы для соответствия диапазону слышимых частот.

Это всего лишь один метод, принятый учеными для изучения звуков космоса. Есть также датчики, которые измеряют электрическую активность пыли, когда комета проходит мимо космического корабля!

“Гигантские прыжки” – это мелодия, составленная НАСА, которая описывает объем научной активности, связанной с Луной. Каждый звук в музыке существует благодаря данным, которые мы получили. Чем выше шаг в данном разделе, тем больше научных публикаций за этот период.

Да, и космические волны далеки от того, что вы обычно слышите в кино. Не ждите грохота и свиста. Космические волны больше похожи на сирены и свистки!

Насколько полезны звуки космоса?

Десятки космических звуков прошли через процесс сонификации. Слуховая система человека уникальна в том смысле, что она может идентифицировать паттерны, поэтому мы распознаем, является ли определенный тон повторяющимся или нет. Эта возможность была использована учеными для разделения и идентификации данных.

Если вы посмотрите на набор данных и расшифруете его, было бы более разумно, если бы вы могли его услышать, а не анализировать экран всплесков или диаграмму. Вот почему Сонификация стала популярным методом анализа космических явлений.

Роберт Александр, специалист по ультразвуковой обработке в Исследовательской группе по солнечной и гелиосферной среде в Университете Мичигана, во время изучения солнечных данных услышал гул, частота которого соответствовала периоду вращения Солнца. Этот звук подразумевал, что он, вероятно, будет периодическим. Это помогло ему сделать вывод, что существуют как быстрые, так и медленные солнечные ветры, которые периодически обрушиваются на землю.

Это только один пример; сонификация также показала, что юпитерианская молния существует. Это помогло исследовать ударные волны, которые формируются, когда магнитное поле планеты препятствует солнечному ветру, и многое другое!

Ученые превратили эти звуки в музыку, применив цифровые технологии.

Эта практика сонификации была использована для инновационного сотрудничества между Европейской южной обсерваторией (ESO) стипендиатом Крисом Харрисоном и слабовидящим астрономом Университета Портсмута доктором Николасом Бонном. Доктор Бонн создал мюзикл, в котором он дал осязаемые формы звездам и черным дырам. Он и его команда переосмыслили звезды, связав громкость звука с яркостью звезды, тон с цветом звезды и так далее.

Это шоу было в основном попыткой открыть чудесный космический мир для аудитории, которая может иметь проблемы со зрением, учитывая, что астрономия в значительной степени связана с зрением и наблюдением.

Наука всегда была многомерной, и человеческое любопытство привело к некоторым поистине удивительным открытиям. Изучение пространства посредством сонификации – это один из таких прорывов, который дал нам силы и позволил заглянуть в глубины космоса, даже несмотря на то, что нам не хватает способности “смотреть” на вселенную.

Источник: //zen.yandex.ru/media/id/5c99d6610b19fb00b30c9a7b/5df520d93d5f6900b1d6be59

WikiMedForum.Ru
Добавить комментарий